Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Galaxy Zoo hunters help astronomers discover rare 'Green Pea' galaxies

29.07.2009
A team of astronomers has discovered a group of rare galaxies called the "Green Peas" with the help of citizen scientists working through an online project called Galaxy Zoo. The finding could lend unique insights into how galaxies form stars in the early universe.

The Galaxy Zoo users, who volunteer their spare time to help classify galaxies in an online image bank, came across a number of objects that stuck out because of their small size and bright green color. They dubbed them the Green Peas.

Employing the help of the volunteers to further analyze these strange new objects, the astronomers discovered that the Green Peas are small, compact galaxies forming stars at an incredibly high rate.

"These are among the most extremely active star-forming galaxies we've ever found," said Carolin Cardamone, an astronomy graduate student at Yale and lead author of the paper, to be published in an upcoming issue of the Monthly Notices of the Royal Astronomical Society.

Of the one million galaxies that make up Galaxy Zoo's image bank, the team found only 250 Green Peas. "No one person could have done this on their own," Cardamone said. "Even if we had managed to look through 10,000 of these images, we would have only come across a few Green Peas and wouldn't have recognized them as a unique class of galaxies."

The galaxies, which are between 1.5 billion and 5 billion light years away, are 10 times smaller than our own Milky Way galaxy and 100 times less massive. But surprisingly, given their small size, they are forming stars 10 times faster than the Milky Way.

"They're growing at an incredible rate," said Kevin Schawinski, a postdoctoral associate at Yale and one of Galaxy Zoo's founders. "These galaxies would have been normal in the early universe, but we just don't see such active galaxies today. Understanding the Green Peas may tell us something about how stars were formed in the early universe and how galaxies evolve."

The Galaxy Zoo volunteers who discovered the Green Peas—and who call themselves the "Peas Corps" and the "Peas Brigade"—began discussing the strange objects in the online forum. (The original forum thread was called "Give peas a chance.")

Cardamone asked the volunteers—many of whom had no previous astronomy background or experience—to refine the sample of objects they detected in order to determine which were bona fide Green Peas and which were not, based on their colors. By analyzing their light, Cardamone determined how much star formation is taking place within the galaxies.

"This is a genuine citizen science project, where the users were directly involved in the analysis," Schawinski said, adding that 10 Galaxy Zoo volunteers are acknowledged in the paper as having made a particularly significant contribution. "It's a great example of how a new way of doing science produced a result that wouldn't have been possible otherwise."

Galaxy Zoo members who helped discover the Green Peas are available for comment.

The Galaxy Zoo project was launched in 2007 by a team of astronomers in the U.K and U.S., including Schawinski. To date, 230,000 volunteers from all over the world have helped classify one million images of galaxies taken by the Sloan Digital Sky Survey. Galaxy Zoo 2, which launched in February 2009, lets users more fully analyze 250,000 of the brightest galaxies.

Other authors of the paper include Marc Sarzi (University of Hertfordshire); Steven Bamford (University of Nottingham); Nicola Bennert (University of California, Santa Barbara); C. M. Urry (Yale University); Chris Lintott (University of Oxford); William Keel (University of Alabama); John Parejko (Drexel University); Robert Nichol and Daniel Thomas (University of Portsmouth); Dan Andreescu (LinkLab); M. Jordan Raddick, Alex Szalay and Jan VandenBerg (Johns Hopkins University); Anze Slosar (Lawrence Berkeley National Lab).

Citation: arxiv.org/abs/0907.4155

Suzanne Taylor Muzzin | EurekAlert!
Further information:
http://www.yale.edu

More articles from Physics and Astronomy:

nachricht Magnetic field traces gas and dust swirling around supermassive black hole
22.02.2018 | Royal Astronomical Society

nachricht UMass Amherst physicists contribute to dark matter detector success
22.02.2018 | University of Massachusetts at Amherst

All articles from Physics and Astronomy >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Developing reliable quantum computers

International research team makes important step on the path to solving certification problems

Quantum computers may one day solve algorithmic problems which even the biggest supercomputers today can’t manage. But how do you test a quantum computer to...

Im Focus: In best circles: First integrated circuit from self-assembled polymer

For the first time, a team of researchers at the Max-Planck Institute (MPI) for Polymer Research in Mainz, Germany, has succeeded in making an integrated circuit (IC) from just a monolayer of a semiconducting polymer via a bottom-up, self-assembly approach.

In the self-assembly process, the semiconducting polymer arranges itself into an ordered monolayer in a transistor. The transistors are binary switches used...

Im Focus: Demonstration of a single molecule piezoelectric effect

Breakthrough provides a new concept of the design of molecular motors, sensors and electricity generators at nanoscale

Researchers from the Institute of Organic Chemistry and Biochemistry of the CAS (IOCB Prague), Institute of Physics of the CAS (IP CAS) and Palacký University...

Im Focus: Hybrid optics bring color imaging using ultrathin metalenses into focus

For photographers and scientists, lenses are lifesavers. They reflect and refract light, making possible the imaging systems that drive discovery through the microscope and preserve history through cameras.

But today's glass-based lenses are bulky and resist miniaturization. Next-generation technologies, such as ultrathin cameras or tiny microscopes, require...

Im Focus: Stem cell divisions in the adult brain seen for the first time

Scientists from the University of Zurich have succeeded for the first time in tracking individual stem cells and their neuronal progeny over months within the intact adult brain. This study sheds light on how new neurons are produced throughout life.

The generation of new nerve cells was once thought to taper off at the end of embryonic development. However, recent research has shown that the adult brain...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

2nd International Conference on High Temperature Shape Memory Alloys (HTSMAs)

15.02.2018 | Event News

Aachen DC Grid Summit 2018

13.02.2018 | Event News

How Global Climate Policy Can Learn from the Energy Transition

12.02.2018 | Event News

 
Latest News

Stiffness matters

22.02.2018 | Life Sciences

Magnetic field traces gas and dust swirling around supermassive black hole

22.02.2018 | Physics and Astronomy

First evidence of surprising ocean warming around Galápagos corals

22.02.2018 | Earth Sciences

VideoLinks
Science & Research
Overview of more VideoLinks >>>