Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Galaxy halos are produced by orphan stars, findings indicate

25.10.2012
UCI, other researchers discount previous theories about origins of infrared glow
Isolated stars kicked to the edges of space by violent galaxy mergers may be the cause of mysterious infrared light halos observed across the sky, according to UC Irvine and other astronomers.

“Background glow in our sky has been a huge unanswered question,” said UCI physics & astronomy professor Asantha Cooray, lead author of a paper about the discovery in the Oct. 25 issue of the journal Nature. “We have new evidence that this light is from stars that linger between galaxies. Individually, they’re too dim to be seen, but we think we’re seeing their collective blush.”

Cooray and colleagues examined 250 hours of data captured by NASA’s powerful Spitzer Space Telescope from a large swath of sky called the Boötes field, which covers the equivalent of 40 full moons near the constellation of the same name. The large scale allowed the researchers to better analyze the patterns of diffuse light.

“Studying this faint background was one of the core goals of our survey, and we carefully designed the observations in order to directly address this important, challenging question,” said co-author Daniel Stern of NASA’s Jet Propulsion Laboratory in Pasadena.

The team concluded that the infrared glow, while weak, is too strong to be consistent with earlier theories that it’s being emitted by the very first celestial bodies. “The glow is just too bright to be from those ancient, far-off galaxies and stars,” said UCI doctoral student and co-author Joseph Smidt.

Instead, the scientists have a new theory, saying it’s “intracluster” or “intrahalo” starlight. Early in the history of the universe, as galaxies grew, they collided and bulked up in mass. As the crashing galaxies became gravitationally tangled, strips of stars were shredded and tossed into space as leftovers. Galaxies also grow by “swallowing” dwarf neighbors, a messy process that likewise results in stray stars. Cosmologists believe these orphaned stars produce the diffuse, blotchy smatterings of light that make up galaxy halos extending well beyond the outer reaches of galaxies.

Additional research is needed to confirm the theory. But the researchers say it makes sense. “A lightbulb went off when we were reading earlier papers predicting the existence of diffuse stars,” Cooray said. “They explain what we’re seeing with Spitzer.”

Other authors are UCI postdoctoral students Francesco De Bernardis and Yan Gong and undergraduate Christopher Frazer; Peter Eisenhardt of NASA’s Jet Propulsion Laboratory; Matthew Ashby of the Harvard-Smithsonian Center for Astrophysics; Anthony Gonzalez of the University of Florida; Christopher Kochanek and Szymon Koz³owski of The Ohio State University (Koz³owski is also with the Warsaw University Astronomical Observatory); and Edward “Ned” Wright of UCLA. Funding was provided by the National Science Foundation, NASA and JPL.

About the University of California, Irvine: Founded in 1965, UCI is a top-ranked university dedicated to research, scholarship and community service. Led by Chancellor Michael Drake since 2005, UCI is among the most dynamic campuses in the University of California system, with nearly 28,000 undergraduate and graduate students, 1,100 faculty and 9,000 staff. Orange County’s second-largest employer, UCI contributes an annual economic impact of $4 billion. For more UCI news, visit www.today.uci.edu.

News Radio: UCI maintains on campus an ISDN line for conducting interviews with its faculty and experts. Use of this line is available for a fee to radio news programs/stations that wish to interview UCI faculty and experts. Use of the ISDN line is subject to availability and approval by the university.

Janet Wilson | EurekAlert!
Further information:
http://www.uci.edu
http://today.uci.edu/news/2012/10/nr_asantha_121024.php

More articles from Physics and Astronomy:

nachricht Astronomers release most complete ultraviolet-light survey of nearby galaxies
18.05.2018 | NASA/Goddard Space Flight Center

nachricht A quantum entanglement between two physically separated ultra-cold atomic clouds
17.05.2018 | University of the Basque Country

All articles from Physics and Astronomy >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Explanation for puzzling quantum oscillations has been found

So-called quantum many-body scars allow quantum systems to stay out of equilibrium much longer, explaining experiment | Study published in Nature Physics

Recently, researchers from Harvard and MIT succeeded in trapping a record 53 atoms and individually controlling their quantum state, realizing what is called a...

Im Focus: Dozens of binaries from Milky Way's globular clusters could be detectable by LISA

Next-generation gravitational wave detector in space will complement LIGO on Earth

The historic first detection of gravitational waves from colliding black holes far outside our galaxy opened a new window to understanding the universe. A...

Im Focus: Entangled atoms shine in unison

A team led by Austrian experimental physicist Rainer Blatt has succeeded in characterizing the quantum entanglement of two spatially separated atoms by observing their light emission. This fundamental demonstration could lead to the development of highly sensitive optical gradiometers for the precise measurement of the gravitational field or the earth's magnetic field.

The age of quantum technology has long been heralded. Decades of research into the quantum world have led to the development of methods that make it possible...

Im Focus: Computer-Designed Customized Regenerative Heart Valves

Cardiovascular tissue engineering aims to treat heart disease with prostheses that grow and regenerate. Now, researchers from the University of Zurich, the Technical University Eindhoven and the Charité Berlin have successfully implanted regenerative heart valves, designed with the aid of computer simulations, into sheep for the first time.

Producing living tissue or organs based on human cells is one of the main research fields in regenerative medicine. Tissue engineering, which involves growing...

Im Focus: Light-induced superconductivity under high pressure

A team of scientists of the Max Planck Institute for the Structure and Dynamics of Matter (MPSD) at the Center for Free-Electron Laser Science in Hamburg investigated optically-induced superconductivity in the alkali-doped fulleride K3C60under high external pressures. This study allowed, on one hand, to uniquely assess the nature of the transient state as a superconducting phase. In addition, it unveiled the possibility to induce superconductivity in K3C60 at temperatures far above the -170 degrees Celsius hypothesized previously, and rather all the way to room temperature. The paper by Cantaluppi et al has been published in Nature Physics.

Unlike ordinary metals, superconductors have the unique capability of transporting electrical currents without any loss. Nowadays, their technological...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

Save the date: Forum European Neuroscience – 07-11 July 2018 in Berlin, Germany

02.05.2018 | Event News

Invitation to the upcoming "Current Topics in Bioinformatics: Big Data in Genomics and Medicine"

13.04.2018 | Event News

Unique scope of UV LED technologies and applications presented in Berlin: ICULTA-2018

12.04.2018 | Event News

 
Latest News

Supersonic waves may help electronics beat the heat

18.05.2018 | Power and Electrical Engineering

Keeping a Close Eye on Ice Loss

18.05.2018 | Information Technology

CrowdWater: An App for Flood Research

18.05.2018 | Information Technology

VideoLinks
Science & Research
Overview of more VideoLinks >>>