Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Galaxy halos are produced by orphan stars, findings indicate

25.10.2012
UCI, other researchers discount previous theories about origins of infrared glow
Isolated stars kicked to the edges of space by violent galaxy mergers may be the cause of mysterious infrared light halos observed across the sky, according to UC Irvine and other astronomers.

“Background glow in our sky has been a huge unanswered question,” said UCI physics & astronomy professor Asantha Cooray, lead author of a paper about the discovery in the Oct. 25 issue of the journal Nature. “We have new evidence that this light is from stars that linger between galaxies. Individually, they’re too dim to be seen, but we think we’re seeing their collective blush.”

Cooray and colleagues examined 250 hours of data captured by NASA’s powerful Spitzer Space Telescope from a large swath of sky called the Boötes field, which covers the equivalent of 40 full moons near the constellation of the same name. The large scale allowed the researchers to better analyze the patterns of diffuse light.

“Studying this faint background was one of the core goals of our survey, and we carefully designed the observations in order to directly address this important, challenging question,” said co-author Daniel Stern of NASA’s Jet Propulsion Laboratory in Pasadena.

The team concluded that the infrared glow, while weak, is too strong to be consistent with earlier theories that it’s being emitted by the very first celestial bodies. “The glow is just too bright to be from those ancient, far-off galaxies and stars,” said UCI doctoral student and co-author Joseph Smidt.

Instead, the scientists have a new theory, saying it’s “intracluster” or “intrahalo” starlight. Early in the history of the universe, as galaxies grew, they collided and bulked up in mass. As the crashing galaxies became gravitationally tangled, strips of stars were shredded and tossed into space as leftovers. Galaxies also grow by “swallowing” dwarf neighbors, a messy process that likewise results in stray stars. Cosmologists believe these orphaned stars produce the diffuse, blotchy smatterings of light that make up galaxy halos extending well beyond the outer reaches of galaxies.

Additional research is needed to confirm the theory. But the researchers say it makes sense. “A lightbulb went off when we were reading earlier papers predicting the existence of diffuse stars,” Cooray said. “They explain what we’re seeing with Spitzer.”

Other authors are UCI postdoctoral students Francesco De Bernardis and Yan Gong and undergraduate Christopher Frazer; Peter Eisenhardt of NASA’s Jet Propulsion Laboratory; Matthew Ashby of the Harvard-Smithsonian Center for Astrophysics; Anthony Gonzalez of the University of Florida; Christopher Kochanek and Szymon Koz³owski of The Ohio State University (Koz³owski is also with the Warsaw University Astronomical Observatory); and Edward “Ned” Wright of UCLA. Funding was provided by the National Science Foundation, NASA and JPL.

About the University of California, Irvine: Founded in 1965, UCI is a top-ranked university dedicated to research, scholarship and community service. Led by Chancellor Michael Drake since 2005, UCI is among the most dynamic campuses in the University of California system, with nearly 28,000 undergraduate and graduate students, 1,100 faculty and 9,000 staff. Orange County’s second-largest employer, UCI contributes an annual economic impact of $4 billion. For more UCI news, visit www.today.uci.edu.

News Radio: UCI maintains on campus an ISDN line for conducting interviews with its faculty and experts. Use of this line is available for a fee to radio news programs/stations that wish to interview UCI faculty and experts. Use of the ISDN line is subject to availability and approval by the university.

Janet Wilson | EurekAlert!
Further information:
http://www.uci.edu
http://today.uci.edu/news/2012/10/nr_asantha_121024.php

More articles from Physics and Astronomy:

nachricht First Juno science results supported by University of Leicester's Jupiter 'forecast'
26.05.2017 | University of Leicester

nachricht Measured for the first time: Direction of light waves changed by quantum effect
24.05.2017 | Vienna University of Technology

All articles from Physics and Astronomy >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Can the immune system be boosted against Staphylococcus aureus by delivery of messenger RNA?

Staphylococcus aureus is a feared pathogen (MRSA, multi-resistant S. aureus) due to frequent resistances against many antibiotics, especially in hospital infections. Researchers at the Paul-Ehrlich-Institut have identified immunological processes that prevent a successful immune response directed against the pathogenic agent. The delivery of bacterial proteins with RNA adjuvant or messenger RNA (mRNA) into immune cells allows the re-direction of the immune response towards an active defense against S. aureus. This could be of significant importance for the development of an effective vaccine. PLOS Pathogens has published these research results online on 25 May 2017.

Staphylococcus aureus (S. aureus) is a bacterium that colonizes by far more than half of the skin and the mucosa of adults, usually without causing infections....

Im Focus: A quantum walk of photons

Physicists from the University of Würzburg are capable of generating identical looking single light particles at the push of a button. Two new studies now demonstrate the potential this method holds.

The quantum computer has fuelled the imagination of scientists for decades: It is based on fundamentally different phenomena than a conventional computer....

Im Focus: Turmoil in sluggish electrons’ existence

An international team of physicists has monitored the scattering behaviour of electrons in a non-conducting material in real-time. Their insights could be beneficial for radiotherapy.

We can refer to electrons in non-conducting materials as ‘sluggish’. Typically, they remain fixed in a location, deep inside an atomic composite. It is hence...

Im Focus: Wafer-thin Magnetic Materials Developed for Future Quantum Technologies

Two-dimensional magnetic structures are regarded as a promising material for new types of data storage, since the magnetic properties of individual molecular building blocks can be investigated and modified. For the first time, researchers have now produced a wafer-thin ferrimagnet, in which molecules with different magnetic centers arrange themselves on a gold surface to form a checkerboard pattern. Scientists at the Swiss Nanoscience Institute at the University of Basel and the Paul Scherrer Institute published their findings in the journal Nature Communications.

Ferrimagnets are composed of two centers which are magnetized at different strengths and point in opposing directions. Two-dimensional, quasi-flat ferrimagnets...

Im Focus: World's thinnest hologram paves path to new 3-D world

Nano-hologram paves way for integration of 3-D holography into everyday electronics

An Australian-Chinese research team has created the world's thinnest hologram, paving the way towards the integration of 3D holography into everyday...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Marine Conservation: IASS Contributes to UN Ocean Conference in New York on 5-9 June

24.05.2017 | Event News

AWK Aachen Machine Tool Colloquium 2017: Internet of Production for Agile Enterprises

23.05.2017 | Event News

Dortmund MST Conference presents Individualized Healthcare Solutions with micro and nanotechnology

22.05.2017 | Event News

 
Latest News

How herpesviruses win the footrace against the immune system

26.05.2017 | Life Sciences

Water forms 'spine of hydration' around DNA, group finds

26.05.2017 | Life Sciences

First Juno science results supported by University of Leicester's Jupiter 'forecast'

26.05.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>