Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:


Galaxy's gamma-ray flares erupted far from its black hole

In 2011, a months-long blast of energy launched by an enormous black hole almost 11 billion years ago swept past Earth.

Using a combination of data from NASA's Fermi Gamma-ray Space Telescope and the National Science Foundation's Very Long Baseline Array (VLBA), the world's largest radio telescope, astronomers have zeroed in on the source of this ancient outburst.

Theorists expect gamma-ray outbursts occur only in close proximity to a galaxy's central black hole, the powerhouse ultimately responsible for the activity. A few rare observations suggested this is not the case.

The 2011 flares from a galaxy known as 4C +71.07 now give astronomers the clearest and most distant evidence that the theory still needs some work. The gamma-ray emission originated about 70 light-years away from the galaxy's central black hole.

The 4C +71.07 galaxy was discovered as a source of strong radio emission in the 1960s. NASA's Compton Gamma-Ray Observatory, which operated in the 1990s, detected high-energy flares, but the galaxy was quiet during Fermi's first two and a half years in orbit.

In early November 2011, at the height of the outburst, the galaxy was more than 10,000 times brighter than the combined luminosity of all of the stars in our Milky Way galaxy.

"This renewed activity came after a long slumber, and that's important because it allows us to explicitly link the gamma-ray flares to the rising emission observed by radio telescopes," said David Thompson, a Fermi deputy project scientist at NASA's Goddard Space Flight Center in Greenbelt, Md.

Located in the constellation Ursa Major, 4C +71.07 is so far away that its light takes 10.6 billion years to reach Earth. Astronomers are seeing this galaxy as it existed when the universe was less than one-fourth of its present age.

At the galaxy's core lies a supersized black hole weighing 2.6 billion times the sun's mass. Some of the matter falling toward the black hole becomes accelerated outward at almost the speed of light, creating dual particle jets blasting in opposite directions. One jet happens to point almost directly toward Earth. This characteristic makes 4C +71.07 a blazar, a classification that includes some of the brightest gamma-ray sources in the sky.

Boston University astronomers Alan Marscher and Svetlana Jorstad routinely monitor 4C +71.07 along with dozens of other blazars using several facilities, including the VLBA.

The instrument's 10 radio telescopes span North America, from Hawaii to St. Croix in the U.S. Virgin Islands, and possess the resolving power of a single radio dish more than 5,300 miles across when their signals are combined. As a result, The VLBA resolves detail about a million times smaller than Fermi's Large Area Telescope (LAT) and 1,000 times smaller than NASA's Hubble Space Telescope.

In autumn 2011, the VLBA images revealed a bright knot that appeared to move outward at a speed 20 times faster than light.

"Although this apparent speed was an illusion caused by actual motion almost directly toward us at 99.87 percent the speed of light, this knot was the key to determining the location where the gamma-rays were produced in the black hole's jet," said Marscher, who presented the findings Monday at the American Astronomical Society meeting in Long Beach, Calif.

The knot passed through a bright stationary feature of the jet, which the astronomers refer to as its radio "core," on April 9, 2011. This occurred within days of Fermi's detection of renewed gamma-ray flaring in the blazar. Marscher and Jorstad noted that the blazar brightened at visible wavelengths in step with the higher-energy emission.

During the most intense period of flaring, from October 2011 to January 2012, the scientists found the polarization direction of the blazar's visible light rotated in the same manner as radio emissions from the knot. They concluded the knot was responsible for the visible and the gamma-ray light, which varied in sync.

This association allowed the researchers to pinpoint the location of the gamma-ray outburst to about 70 light-years from the black hole.

The astronomers think that the gamma rays were produced when electrons moving near the speed of light within the jet collided with visible and infrared light originating outside of the jet. Such a collision can kick the light up to much higher energies, a process known as inverse-Compton scattering.

The source of the lower-energy light is unclear at the moment. The researchers speculate the source may be an outer, slow-moving sheath that surrounds the jet. Nicholas MacDonald, a graduate student at Boston University, is investigating how the gamma-ray brightness should change in this scenario to compare with observations.

"The VLBA is the only instrument that can bring us images from so near the edge of a young supermassive black hole, and Fermi's LAT is the only instrument that can see the highest-energy light from the galaxy's jet," said Jorstad.

NASA's Fermi Gamma-ray Space Telescope is an astrophysics and particle physics partnership. Fermi is managed by NASA's Goddard Space Flight Center. It was developed in collaboration with the U.S. Department of Energy, with contributions from academic institutions and partners in France, Germany, Italy, Japan, Sweden and the United States.

The VLBA is operated by the National Radio Astronomy Observatory, a facility of the National Science Foundation operated under cooperative agreement by Associated Universities, Inc.

For images related to this finding and to learn more about Fermi, visit:

J. D. Harrington | EurekAlert!
Further information:

More articles from Physics and Astronomy:

nachricht Scientists paint quantum electronics with beams of light
12.10.2015 | University of Chicago

nachricht TRIGA Mainz reaches world record of 20,000 pulses in 50 years
12.10.2015 | Johannes Gutenberg-Universität Mainz

All articles from Physics and Astronomy >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Secure data transfer thanks to a single photon

Physicists of TU Berlin and mathematicians of MATHEON are so successful that even the prestigious journal “Nature Communications” reported on their project.

Security in data transfer is an important issue, and not only since the NSA scandal. Sometimes, however, the need for speed conflicts to a certain degree with...

Im Focus: A Light Touch May Help Animals and Robots Move on Sand and Snow

Having a light touch can make a hefty difference in how well animals and robots move across challenging granular surfaces such as snow, sand and leaf litter. Research reported October 9 in the journal Bioinspiration & Biomimetics shows how the design of appendages – whether legs or wheels – affects the ability of both robots and animals to cross weak and flowing surfaces.

Using an air fluidized bed trackway filled with poppy seeds or glass spheres, researchers at the Georgia Institute of Technology systematically varied the...

Im Focus: Reliable in-line inspections of high-strength automotive body parts within seconds

Nondestructive material testing (NDT) is a fast and effective way to analyze the quality of a product during the manufacturing process. Because defective materials can lead to malfunctioning finished products, NDT is an essential quality assurance measure, especially in the manufacture of safety-critical components such as automotive B-pillars. NDT examines the quality without damaging the component or modifying the surface of the material. At this year's Blechexpo trade fair in Stuttgart, Fraunhofer IZFP will have an exhibit that demonstrates the nondestructive testing of high-strength automotive body parts using 3MA. The measurement results are available in a matter of seconds.

To minimize vehicle weight and fuel consumption while providing the highest level of crash safety, automotive bodies are reinforced with elements made from...

Im Focus: Kick-off for a new era of precision astronomy

The MICADO camera, a first light instrument for the European Extremely Large Telescope (E-ELT), has entered a new phase in the project: by agreeing to a Memorandum of Understanding, the partners in Germany, France, the Netherlands, Austria, and Italy, have all confirmed their participation. Following this milestone, the project's transition into its preliminary design phase was approved at a kick-off meeting held in Vienna. Two weeks earlier, on September 18, the consortium and the European Southern Observatory (ESO), which is building the telescope, have signed the corresponding collaboration agreement.

As the first dedicated camera for the E-ELT, MICADO will equip the giant telescope with a capability for diffraction-limited imaging at near-infrared...

Im Focus: Locusts at the wheel: University of Graz investigates collision detector inspired by insect eyes

Self-driving cars will be on our streets in the foreseeable future. In Graz, research is currently dedicated to an innovative driver assistance system that takes over control if there is a danger of collision. It was nature that inspired Dr Manfred Hartbauer from the Institute of Zoology at the University of Graz: in dangerous traffic situations, migratory locusts react around ten times faster than humans. Working together with an interdisciplinary team, Hartbauer is investigating an affordable collision detector that is equipped with artificial locust eyes and can recognise potential crashes in time, during both day and night.

Inspired by insects

All Focus news of the innovation-report >>>



Event News

EHFG 2015: Securing healthcare and sustainably strengthening healthcare systems

01.10.2015 | Event News

Conference in Brussels: Tracking and Tracing the Smallest Marine Life Forms

30.09.2015 | Event News

World Alzheimer`s Day – Professor Willnow: Clearer Insights into the Development of the Disease

17.09.2015 | Event News

Latest News

New Oregon approach for 'nanohoops' could energize future devices

13.10.2015 | Life Sciences

Supercoiled DNA is far more dynamic than the 'Watson-Crick' double helix

13.10.2015 | Life Sciences

Breast cancer drug beats superbug

13.10.2015 | Health and Medicine

More VideoLinks >>>