Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

When galaxies switch off

01.08.2013
Hubble's COSMOS survey solves "quenched" galaxy mystery

Some galaxies hit a point in their lives when their star formation is snuffed out, and they become "quenched". Quenched galaxies in the distant past appear to be much smaller than the quenched galaxies in the Universe today.


Sample of non-star-forming galaxies from the COSMOS survey
Image credit: NASA, ESA, M. Carollo (ETH Zurich)

This has always puzzled astronomers — how can these galaxies grow if they are no longer forming stars? A team of astronomers has now used a huge set of Hubble observations to give a surprisingly simple answer to this long-standing cosmic riddle.

Until now, these small, snuffed-out galaxies were thought to grow into the larger quenched galaxies we see nearby.

As these galaxies are no longer forming new stars, they were thought to grow by colliding and merging with other smaller quenched galaxies some five to ten times less massive. However, these mergers would require many such small galaxies floating around for the quenched population to snack on — which we do not see.

Until recently it had not been possible to explore a sufficient number of quenched galaxies, but now a team of astronomers has used observations from the Hubble COSMOS survey to identify and count these switched-off galaxies throughout the last eight billion years of cosmic history.

"The apparent puffing up of quenched galaxies has been one of the biggest puzzles about galaxy evolution for many years," says Marcella Carollo of ETH Zurich, Switzerland, lead author on a new paper exploring these galaxies. "No single collection of images has been large enough to enable us to study very large numbers of galaxies in exactly the same way — until Hubble's COSMOS," adds co-author Nick Scoville of Caltech, USA.

The team used the large set of COSMOS images [1], alongside additional observations from the Canada–France–Hawaii Telescope and the Subaru Telescope, both in Hawaii, USA, to peer back to when the Universe was less than half its present age. These observations mapped an area in the sky almost nine times that of the full Moon.

The quenched galaxies seen at these times are small and compact — and surprisingly, it seems they stay that way. Rather than puffing up and growing via mergers over time, these small galaxies mostly keep the size they had when their star formation switched off [2]. So why do we see these galaxies apparently growing larger over time?

"We found that a large number of the bigger galaxies instead switch off at later times, joining their smaller quenched siblings and giving the mistaken impression of individual galaxy growth over time," says co-author Simon Lilly, also of ETH Zurich. "It's like saying that the increase in the average apartment size in a city is not due to the addition of new rooms to old buildings, but rather to the construction of new, larger apartments," adds co-author Alvio Renzini of INAF Padua Observatory, Italy.

This tells us a lot about how galaxies have evolved over the last eight billion years of the Universe's history. It was already known that actively star-forming galaxies were smaller in the early Universe, explaining why they were smaller when their star formation first switched off.

"COSMOS provided us with simply the best set of observations for this sort of work — it lets us study very large numbers of galaxies in exactly the same way, which hasn't been possible before," adds co-author Peter Capak, also of Caltech. "Our study offers a surprisingly simple and obvious explanation to this puzzle. Whenever we see simplicity in nature amidst apparent complexity, it's very satisfying," concludes Carollo.

Notes

[1] In making the COSMOS survey, Hubble photographed 575 slightly overlapping views of the Universe using the Advanced Camera for Surveys (ACS) aboard Hubble. It took nearly 1000 hours of observations and is the largest project ever conducted with Hubble. This survey has proved invaluable; it has helped to map dark matter in 3D (heic0701), to further understand the effects of gravitational lensing (heic0806), and to characterise the expansion of the Universe (heic1005).

[2] There is still the possibility of growth via mergers for a fraction of this quenched population, but not a majority, as previously thought.

Notes for editors

The Hubble Space Telescope is a project of international cooperation between ESA and NASA.

The research is presented in a paper entitled “Newly-quenched galaxies as the cause for the apparent evolution in average size of the population”, for publication in The Astrophysical Journal.

[1] The international team of astronomers in this study consists of C. M. Carollo (Swiss Federal Institute of Technology [ETH Zurich], Switzerland), T. J. Bschorr (Swiss Federal Institute of Technology [ETH Zurich], Switzerland), A. Renzini (Padova Observatory, Italy), S. J. Lilly (Swiss Federal Institute of Technology [ETH Zurich], Switzerland), P. Capak (Spitzer Science Center, California Institute of Technology, USA), A. Cibinel (Swiss Federal Institute of Technology [ETH Zurich], Switzerland), O. Ilbert (Laboratoire d’Astrophysique de Marseille, France), M. Onodera (Swiss Federal Institute of Technology [ETH Zurich], Switzerland), N. Scoville (California Institute of Technology, USA), E. Cameron (Swiss Federal Institute of Technology [ETH Zurich], Switzerland), B. Mobasher (University of California, USA), D. Sanders (University of Hawaii, USA), Y. Taniguchi (Ehime University, Japan).

Contacts

Marcella Carollo
ETH Zurich
Zurich, Switzerland
Tel: +4144633 3725
Email: marcella@phys.ethz.ch
Alvio Renzini
INAF, Astronomical Observatory of Padova
Padova, Italy
Tel: 049 8293 503
Email: alvio.renzini@oapd.inaf.it
Peter Capak
California Institute of Technology
California, USA
Tel: +1-626-395-6422
Email: capak@astro.caltech.edu
Nicky Guttridge
ESA/Hubble
Garching, Germany
Tel: +49-89-3200-6855
Email: nguttrid@partner.eso.org

| ESA/Hubble Information Centre
Further information:
http://www.spacetelescope.org/news/heic1313/

More articles from Physics and Astronomy:

nachricht Electrocatalysis can advance green transition
23.01.2017 | Technical University of Denmark

nachricht Quantum optical sensor for the first time tested in space – with a laser system from Berlin
23.01.2017 | Ferdinand-Braun-Institut Leibniz-Institut für Höchstfrequenztechnik

All articles from Physics and Astronomy >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Quantum optical sensor for the first time tested in space – with a laser system from Berlin

For the first time ever, a cloud of ultra-cold atoms has been successfully created in space on board of a sounding rocket. The MAIUS mission demonstrates that quantum optical sensors can be operated even in harsh environments like space – a prerequi-site for finding answers to the most challenging questions of fundamental physics and an important innovation driver for everyday applications.

According to Albert Einstein's Equivalence Principle, all bodies are accelerated at the same rate by the Earth's gravity, regardless of their properties. This...

Im Focus: Traffic jam in empty space

New success for Konstanz physicists in studying the quantum vacuum

An important step towards a completely new experimental access to quantum physics has been made at University of Konstanz. The team of scientists headed by...

Im Focus: How gut bacteria can make us ill

HZI researchers decipher infection mechanisms of Yersinia and immune responses of the host

Yersiniae cause severe intestinal infections. Studies using Yersinia pseudotuberculosis as a model organism aim to elucidate the infection mechanisms of these...

Im Focus: Interfacial Superconductivity: Magnetic and superconducting order revealed simultaneously

Researchers from the University of Hamburg in Germany, in collaboration with colleagues from the University of Aarhus in Denmark, have synthesized a new superconducting material by growing a few layers of an antiferromagnetic transition-metal chalcogenide on a bismuth-based topological insulator, both being non-superconducting materials.

While superconductivity and magnetism are generally believed to be mutually exclusive, surprisingly, in this new material, superconducting correlations...

Im Focus: Studying fundamental particles in materials

Laser-driving of semimetals allows creating novel quasiparticle states within condensed matter systems and switching between different states on ultrafast time scales

Studying properties of fundamental particles in condensed matter systems is a promising approach to quantum field theory. Quasiparticles offer the opportunity...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Sustainable Water use in Agriculture in Eastern Europe and Central Asia

19.01.2017 | Event News

12V, 48V, high-voltage – trends in E/E automotive architecture

10.01.2017 | Event News

2nd Conference on Non-Textual Information on 10 and 11 May 2017 in Hannover

09.01.2017 | Event News

 
Latest News

Tracking movement of immune cells identifies key first steps in inflammatory arthritis

23.01.2017 | Health and Medicine

Electrocatalysis can advance green transition

23.01.2017 | Physics and Astronomy

New technology for mass-production of complex molded composite components

23.01.2017 | Process Engineering

VideoLinks
B2B-VideoLinks
More VideoLinks >>>