Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Galaxies out of a Supercomputer

08.05.2014

A new computer simulation shows the formation of galaxies with unprecedented precision, allowing astrophysicists from Heidelberg, the U.S. and England to indirectly confirm the standard model of cosmology.

Galaxies are typically comprised of several hundred billion stars and display a variety of shapes and sizes. The formation of galaxies is one of the most involved and complex problems of astrophysics.


Several views of the Illustris simulation at different scales. Astrophysicist Volker Springel (HITS) wrote the AREPO code that made this simulation possible.

Image: Illustris


Images of the simulated population of galaxies, arranged along the classical Hubble sequence (“tuning fork” diagram) for morphological classification.

Image: Illustris

In cooperation with an international team of scientists at the MIT, Harvard University and other institutions, scientists at the Heidelberg Institute for Theoretical Studies (HITS) have now succeeded in simulating the physics of galaxy formation in a vast region of space with very high accuracy.

In the journal Nature, they report that the calculation yielded for the first time a realistic mix of elliptical and spiral galaxies. Moreover, the simulation can explain the enrichment of heavy elements (so-called “metals”) in neutral hydrogen gas. In addition, the calculated galaxies are distributed in space as observed with telescopes.

The “Illustris” simulation project produced more than 200 terabyte of data and required the combined power of more than 8,000 processors for several months. The simulation was possible thanks to the AREPO code for cosmological structure formation, which was developed at HITS, and the supercomputers CURIE in France and SuperMUC in Germany. The virtual universe that the scientists created allows a variety of novel predictions as well as comprehensive tests of cosmological theories of galaxy formation.

The standard model of cosmology is based on the hypothesis that the Universe is dominated by unknown forms of matter and energy. We do not know the true physical nature of dark matter and dark energy yet, but their impact can be understood with the help of supercomputers.

Previous simulations of the cosmos generated a cosmic web of matter concentrations that showed a passing resemblance to the galaxy distribution. However, they were not able to create elliptical and spiral galaxies and follow the small-scale evolution of interstellar gas and stars, which are closely linked to each other. With the ambitious “Illustris” project, the cosmologists have now taken a major step towards addressing this issue.

In the world’s largest hydrodynamic simulation of galaxy formation, 13 billion years of cosmic evolution were followed in a cube of 350 million light-years across, beginning 12 million years after the Big Bang. During this time, the “primordial soup” consisting of hydrogen, helium gas and dark matter formed increasingly big clumps, pulled together by gravity.

Finally, galactic stellar systems developed, whose growth is regulated by the complex interplay between radiation processes, hydrodynamic shock waves, turbulent flows, star formation, supernova explosions and the energy supplied through growing supermassive black holes. The Illustris team was able to calculate these physical processes with the AREPO code in its new supercomputer simulation. AREPO is a “moving mesh code”, which does not partition the simulated universe with a fixed grid but rather uses a movable and deformable mesh, which allows a particularly accurate processing of the vastly different size and mass scales occurring in individual galaxies.

The main simulation of the project employed more than 18 billion particles and cells and bridges a dynamic range of more than one million per space dimension – if a photo needed to resolve similarly small details, it would have to offer one million megapixels. The memory consumption of the Illustris simulation was more than 25 terabyte, and the generated data volume of over 200 terabyte sets a new record in cosmology. This flood of data makes it possible to study the evolution of about 50,000 well-resolved galaxies in detail, and to make theoretical predictions for cosmological structure formation with high accuracy.

Several years of preparatory work for the simulation paid off: For the first time, the famous “tuning fork diagram” of galaxy morphology, which goes back to Edwin Hubble, can be reproduced. Mark Vogelsberger (MIT), first author of the initial study on Illustris, published in Nature, says: “It is remarkable that the universe’s initial conditions as observed after the Big Bang can actually produce galaxies with the right sizes and shapes.”

Indirectly, the findings can be regarded as a confirmation of the standard model of cosmology. “We can finally leave the old and coarse models of galaxy formation behind and not only precisely calculate dark matter, but also the ordinary visible matter,” says Prof. Volker Springel, group leader of the HITS research group “Theoretical Astrophysics” and author of the AREPO code. He adds: “The Illustris results mark a radical change in theoretical studies of galaxy formation.”

Press Contact:
Dr. Peter Saueressig
Public Relations
Heidelberg Institute for Theoretical Studies (HITS)
Tel.: +49-6221-533-245
Fax: +49-6221-533-298
peter.saueressig@h-its.org
www.h-its.org

Scientific Contact:
Prof. Dr. Volker Springel
Heidelberg Institute for Theoretical Studies (HITS) / Heidelberg University
Tel: +49-6221-533-241
volker.springel@h-its.org
www.h-its.org

Original scientific publication:
M. Vogelsberger, S. Genel, V. Springel, P. Torrey, D. Sijacki, D. Xu, G. Snyder, S. Bird, D. Nelson, L. Hernquist. “Properties of galaxies reproduced by a hydrodynamic simulation”, Nature, May 8, 2014, doi:10.1038/nature13316

Further links:
Website of the Illustris Project (with further visualizations): http://www.illustris-project.org
Gauss Centre for Supercomputing: http://www.gauss-centre.eu
SuperMUC at the Leibniz Computing Center: http://www.lrz.de/services/compute/supermuc
AREPO-Code: V. Springel, 2010, MNRAS, 401, 791 http://mnras.oxfordjournals.org/content/401/2/791.full.html

HITS
The Heidelberg Institute for Theoretical Studies is a private, non-profit research institute. As a research institute of the Klaus Tschira Foundation, HITS conducts basic research from astrophysics to cell biology, with a focus on processing and structuring large volumes of data. The institute is jointly managed by Klaus Tschira and Andreas Reuter, and located at the campus area Schloss-Wolfsbrunnenweg 35.

Weitere Informationen:

http://www.h-its.org/english/press/pressreleases.php?we_objectID=1080 HITS press release
http://www.illustris-project.org Website of the Illustris project

Dr. Peter Saueressig | idw - Informationsdienst Wissenschaft

Further reports about: Galaxies HITS MIT Supercomputer Tschira dark galaxies hydrodynamic matter structure

More articles from Physics and Astronomy:

nachricht A blueprint for clearing the skies of space debris
17.04.2015 | RIKEN

nachricht Quantum Physics – Hot and Cold at the Same Time
17.04.2015 | Ruprecht-Karls-Universität Heidelberg

All articles from Physics and Astronomy >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Astronomers reveal supermassive black hole's intense magnetic field

Astronomers from Chalmers University of Technology have used the giant telescope Alma to reveal an extremely powerful magnetic field very close to a supermassive black hole in a distant galaxy

Astronomers from Chalmers University of Technology have used the giant telescope Alma to reveal an extremely powerful magnetic field very close to a...

Im Focus: A “pin ball machine” for atoms and photons

A team of physicists from MPQ, Caltech, and ICFO proposes the combination of nano-photonics with ultracold atoms for simulating quantum many-body systems and creating new states of matter.

Ultracold atoms in the so-called optical lattices, that are generated by crosswise superposition of laser beams, have been proven to be one of the most...

Im Focus: UV light robot to clean hospital rooms could help stop spread of 'superbugs'

Can a robot clean a hospital room just as well as a person?

According to new research out of the Texas A&M Health Science Center College of Medicine, that is indeed the case. Chetan Jinadatha, M.D., M.P.H., assistant...

Im Focus: Graphene pushes the speed limit of light-to-electricity conversion

Researchers from ICFO, MIT and UC Riverside have been able to develop a graphene-based photodetector capable of converting absorbed light into an electrical voltage at ultrafast timescales

The efficient conversion of light into electricity plays a crucial role in many technologies, ranging from cameras to solar cells.

Im Focus: Study shows novel pattern of electrical charge movement through DNA

Electrical charges not only move through wires, they also travel along lengths of DNA, the molecule of life. The property is known as charge transport.

In a new study appearing in the journal Nature Chemistry, authors, Limin Xiang, Julio Palma, Christopher Bruot and others at Arizona State University's...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

HHL's Entrepreneurship Conference on FinTech

13.04.2015 | Event News

World Conference On Regenerative Medicine 2015: Registration And Abstract Submission Now Open

25.03.2015 | Event News

University presidents from all over the world meet in Hamburg

19.03.2015 | Event News

 
Latest News

Engineer Improves Rechargeable Batteries with MoS2 Nano 'Sandwich'

17.04.2015 | Power and Electrical Engineering

Comparing Climate Models to Real World Shows Differences in Precipitation Intensity

17.04.2015 | Earth Sciences

A blueprint for clearing the skies of space debris

17.04.2015 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>