Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Galaxies Had ‘Mature’ Shapes 11.5 Billion Years Ago

16.08.2013
Studying the evolution and anatomy of galaxies using the Hubble Space Telescope, an international team of astronomers led by doctoral candidate BoMee Lee and her advisor Mauro Giavalisco at the University of Massachusetts Amherst have established that mature-looking galaxies existed much earlier than previously known, when the universe was only about 2.5 billion years old, or 11.5 billion years ago. “Finding them this far back in time is a significant discovery,” says lead author Lee.

The team used two cameras, Wide Field Camera 3 (WFC3), and Advanced Camera for Surveys (ACS), plus observations from the Hubble’s Cosmic Assembly Near-infrared Deep Extragalactic Legacy Survey (CANDELS), the largest project in the scope’s history with 902 assigned orbits of observing time, to explore the shapes and colors of distant galaxies over the last 80 percent of the Universe’s history. Results appear in the current online issue of The Astrophysical Journal.


NASA, ESA, M. Kornmesser

This image shows a "slice" of the Universe some 11 billion years back in time. The shape is that of the Hubble tuning fork diagram, which describes and separates galaxies according to their morphology into spiral (S), elliptical (E), and lenticular (S0) galaxies. On the left of this diagram are the ellipticals, with lenticulars in the middle, and the spirals branching out on the right side. The spirals on the bottom branch have bars cutting through their centres. The galaxies at these distances from us are small and still in the process of forming. This image is illustrative; the Hubble images used were selected based on their appearance. The individual distance to these galaxies is only approximate.

Lee points out that the huge CANDELS dataset allowed her team to analyze a larger number of these galaxies, a total 1,671, than ever before, consistently and in detail. “The significant resolution and sensitivity of WFC3 was a great resource for us to use in order to consistently study ancient galaxies in the early Universe,” says Lee.

She and colleagues confirm for an earlier period than ever before that the shapes and colors of these extremely distant young galaxies fit the visual classification system introduced in 1926 by Edwin Hubble and known as the Hubble Sequence. It classifies galaxies into two main groups: Ellipticals and spirals, with lenticular galaxies as a transitional group. The system is based on their ability to form stars, which in turn determines their colors, shape and size.

Why modern galaxies are divided into these two main types and what caused this difference is a key question of cosmology, says Giavalisco. “Another piece of the puzzle is that we still do not know why today ‘red and dead’ elliptical galaxies are old and unable to form stars, while spirals, like our own Milky Way, keep forming new stars. This is not just a classification scheme, it corresponds to a profound difference in the galaxies’ physical properties and how they were formed.”

Lee adds, “This was a key question: When, and over what timescale did the Hubble Sequence form? To answer this, you need to peer at distant galaxies and compare them to their closer relatives, to see if they too can be described in the same way. The Hubble Sequence underpins a lot of what we know about how galaxies form and evolve. It turns out that we could show this sequence was already in place as early as 11.5 billion years ago.”

Galaxies as massive as the Milky Way are relatively rare in the young Universe. This scarcity prevented previous studies from gathering a large enough sample of mature galaxies to properly describe their characteristics. Galaxies at these early times appear to be mostly irregular systems with no clearly defined morphology. There are blue star-forming galaxies that sometimes show structures such as discs, bulges and messy clumps, as well as red galaxies with little or no star formation. Until now, nobody knew if the red and blue colors were related to galaxy morphology, the UMass Amherst authors note.

There was previous evidence that the Hubble Sequence holds true as far back as around 8 billion years ago, the authors point out, but their new observations push a further 2.5 billion years back in cosmic time, covering 80 percent of the history of the Universe.

Previous studies had also reached into this epoch to study lower-mass galaxies, but none had conclusively looked at large, mature galaxies like the Milky Way. Lee and colleagues’ new observations confirm that all galaxies this far back, big and small, already fit into the sequence a mere 2.5 billion years after the Big Bang.

“Clearly, the Hubble Sequence formed very quickly in the history of the cosmos, it was not a slow process,” adds Giavalisco. “Now we have to go back to theory and try to figure out how and why.”

Besides Lee, Giavalisco, and C.C. Williams at UMass Amherst, with van der Wel in Heidelberg, the team includes astronomers from the University of California, the Space Telescope Science Institute, the University of Kentucky, the University of Nottingham, U.K.), the Max Planck Institute for Extraterrestrial Physics, The Hebrew University, Israel, National Optical Astronomy Observatory, Tucson, and the University of Michigan.

This work was funded by NASA through a grant administered by the Space Telescope Science Institute, which operates the Hubble Space Telescope. The telescope is a project of international cooperation between the European Space Agency and NASA.

BoMee Lee
413-545-0731
bomee@astro.umass.edu

BoMee Lee | Newswise
Further information:
http://www.umass.edu

More articles from Physics and Astronomy:

nachricht Measured for the first time: Direction of light waves changed by quantum effect
24.05.2017 | Vienna University of Technology

nachricht Physicists discover mechanism behind granular capillary effect
24.05.2017 | University of Cologne

All articles from Physics and Astronomy >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: A quantum walk of photons

Physicists from the University of Würzburg are capable of generating identical looking single light particles at the push of a button. Two new studies now demonstrate the potential this method holds.

The quantum computer has fuelled the imagination of scientists for decades: It is based on fundamentally different phenomena than a conventional computer....

Im Focus: Turmoil in sluggish electrons’ existence

An international team of physicists has monitored the scattering behaviour of electrons in a non-conducting material in real-time. Their insights could be beneficial for radiotherapy.

We can refer to electrons in non-conducting materials as ‘sluggish’. Typically, they remain fixed in a location, deep inside an atomic composite. It is hence...

Im Focus: Wafer-thin Magnetic Materials Developed for Future Quantum Technologies

Two-dimensional magnetic structures are regarded as a promising material for new types of data storage, since the magnetic properties of individual molecular building blocks can be investigated and modified. For the first time, researchers have now produced a wafer-thin ferrimagnet, in which molecules with different magnetic centers arrange themselves on a gold surface to form a checkerboard pattern. Scientists at the Swiss Nanoscience Institute at the University of Basel and the Paul Scherrer Institute published their findings in the journal Nature Communications.

Ferrimagnets are composed of two centers which are magnetized at different strengths and point in opposing directions. Two-dimensional, quasi-flat ferrimagnets...

Im Focus: World's thinnest hologram paves path to new 3-D world

Nano-hologram paves way for integration of 3-D holography into everyday electronics

An Australian-Chinese research team has created the world's thinnest hologram, paving the way towards the integration of 3D holography into everyday...

Im Focus: Using graphene to create quantum bits

In the race to produce a quantum computer, a number of projects are seeking a way to create quantum bits -- or qubits -- that are stable, meaning they are not much affected by changes in their environment. This normally needs highly nonlinear non-dissipative elements capable of functioning at very low temperatures.

In pursuit of this goal, researchers at EPFL's Laboratory of Photonics and Quantum Measurements LPQM (STI/SB), have investigated a nonlinear graphene-based...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Marine Conservation: IASS Contributes to UN Ocean Conference in New York on 5-9 June

24.05.2017 | Event News

AWK Aachen Machine Tool Colloquium 2017: Internet of Production for Agile Enterprises

23.05.2017 | Event News

Dortmund MST Conference presents Individualized Healthcare Solutions with micro and nanotechnology

22.05.2017 | Event News

 
Latest News

Physicists discover mechanism behind granular capillary effect

24.05.2017 | Physics and Astronomy

Measured for the first time: Direction of light waves changed by quantum effect

24.05.2017 | Physics and Astronomy

Marine Conservation: IASS Contributes to UN Ocean Conference in New York on 5-9 June

24.05.2017 | Event News

VideoLinks
B2B-VideoLinks
More VideoLinks >>>