Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Galaxies Had ‘Mature’ Shapes 11.5 Billion Years Ago

16.08.2013
Studying the evolution and anatomy of galaxies using the Hubble Space Telescope, an international team of astronomers led by doctoral candidate BoMee Lee and her advisor Mauro Giavalisco at the University of Massachusetts Amherst have established that mature-looking galaxies existed much earlier than previously known, when the universe was only about 2.5 billion years old, or 11.5 billion years ago. “Finding them this far back in time is a significant discovery,” says lead author Lee.

The team used two cameras, Wide Field Camera 3 (WFC3), and Advanced Camera for Surveys (ACS), plus observations from the Hubble’s Cosmic Assembly Near-infrared Deep Extragalactic Legacy Survey (CANDELS), the largest project in the scope’s history with 902 assigned orbits of observing time, to explore the shapes and colors of distant galaxies over the last 80 percent of the Universe’s history. Results appear in the current online issue of The Astrophysical Journal.


NASA, ESA, M. Kornmesser

This image shows a "slice" of the Universe some 11 billion years back in time. The shape is that of the Hubble tuning fork diagram, which describes and separates galaxies according to their morphology into spiral (S), elliptical (E), and lenticular (S0) galaxies. On the left of this diagram are the ellipticals, with lenticulars in the middle, and the spirals branching out on the right side. The spirals on the bottom branch have bars cutting through their centres. The galaxies at these distances from us are small and still in the process of forming. This image is illustrative; the Hubble images used were selected based on their appearance. The individual distance to these galaxies is only approximate.

Lee points out that the huge CANDELS dataset allowed her team to analyze a larger number of these galaxies, a total 1,671, than ever before, consistently and in detail. “The significant resolution and sensitivity of WFC3 was a great resource for us to use in order to consistently study ancient galaxies in the early Universe,” says Lee.

She and colleagues confirm for an earlier period than ever before that the shapes and colors of these extremely distant young galaxies fit the visual classification system introduced in 1926 by Edwin Hubble and known as the Hubble Sequence. It classifies galaxies into two main groups: Ellipticals and spirals, with lenticular galaxies as a transitional group. The system is based on their ability to form stars, which in turn determines their colors, shape and size.

Why modern galaxies are divided into these two main types and what caused this difference is a key question of cosmology, says Giavalisco. “Another piece of the puzzle is that we still do not know why today ‘red and dead’ elliptical galaxies are old and unable to form stars, while spirals, like our own Milky Way, keep forming new stars. This is not just a classification scheme, it corresponds to a profound difference in the galaxies’ physical properties and how they were formed.”

Lee adds, “This was a key question: When, and over what timescale did the Hubble Sequence form? To answer this, you need to peer at distant galaxies and compare them to their closer relatives, to see if they too can be described in the same way. The Hubble Sequence underpins a lot of what we know about how galaxies form and evolve. It turns out that we could show this sequence was already in place as early as 11.5 billion years ago.”

Galaxies as massive as the Milky Way are relatively rare in the young Universe. This scarcity prevented previous studies from gathering a large enough sample of mature galaxies to properly describe their characteristics. Galaxies at these early times appear to be mostly irregular systems with no clearly defined morphology. There are blue star-forming galaxies that sometimes show structures such as discs, bulges and messy clumps, as well as red galaxies with little or no star formation. Until now, nobody knew if the red and blue colors were related to galaxy morphology, the UMass Amherst authors note.

There was previous evidence that the Hubble Sequence holds true as far back as around 8 billion years ago, the authors point out, but their new observations push a further 2.5 billion years back in cosmic time, covering 80 percent of the history of the Universe.

Previous studies had also reached into this epoch to study lower-mass galaxies, but none had conclusively looked at large, mature galaxies like the Milky Way. Lee and colleagues’ new observations confirm that all galaxies this far back, big and small, already fit into the sequence a mere 2.5 billion years after the Big Bang.

“Clearly, the Hubble Sequence formed very quickly in the history of the cosmos, it was not a slow process,” adds Giavalisco. “Now we have to go back to theory and try to figure out how and why.”

Besides Lee, Giavalisco, and C.C. Williams at UMass Amherst, with van der Wel in Heidelberg, the team includes astronomers from the University of California, the Space Telescope Science Institute, the University of Kentucky, the University of Nottingham, U.K.), the Max Planck Institute for Extraterrestrial Physics, The Hebrew University, Israel, National Optical Astronomy Observatory, Tucson, and the University of Michigan.

This work was funded by NASA through a grant administered by the Space Telescope Science Institute, which operates the Hubble Space Telescope. The telescope is a project of international cooperation between the European Space Agency and NASA.

BoMee Lee
413-545-0731
bomee@astro.umass.edu

BoMee Lee | Newswise
Further information:
http://www.umass.edu

More articles from Physics and Astronomy:

nachricht Pulses of electrons manipulate nanomagnets and store information
21.07.2017 | American Institute of Physics

nachricht Vortex photons from electrons in circular motion
21.07.2017 | National Institutes of Natural Sciences

All articles from Physics and Astronomy >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Manipulating Electron Spins Without Loss of Information

Physicists have developed a new technique that uses electrical voltages to control the electron spin on a chip. The newly-developed method provides protection from spin decay, meaning that the contained information can be maintained and transmitted over comparatively large distances, as has been demonstrated by a team from the University of Basel’s Department of Physics and the Swiss Nanoscience Institute. The results have been published in Physical Review X.

For several years, researchers have been trying to use the spin of an electron to store and transmit information. The spin of each electron is always coupled...

Im Focus: The proton precisely weighted

What is the mass of a proton? Scientists from Germany and Japan successfully did an important step towards the most exact knowledge of this fundamental constant. By means of precision measurements on a single proton, they could improve the precision by a factor of three and also correct the existing value.

To determine the mass of a single proton still more accurate – a group of physicists led by Klaus Blaum and Sven Sturm of the Max Planck Institute for Nuclear...

Im Focus: On the way to a biological alternative

A bacterial enzyme enables reactions that open up alternatives to key industrial chemical processes

The research team of Prof. Dr. Oliver Einsle at the University of Freiburg's Institute of Biochemistry has long been exploring the functioning of nitrogenase....

Im Focus: The 1 trillion tonne iceberg

Larsen C Ice Shelf rift finally breaks through

A one trillion tonne iceberg - one of the biggest ever recorded -- has calved away from the Larsen C Ice Shelf in Antarctica, after a rift in the ice,...

Im Focus: Laser-cooled ions contribute to better understanding of friction

Physics supports biology: Researchers from PTB have developed a model system to investigate friction phenomena with atomic precision

Friction: what you want from car brakes, otherwise rather a nuisance. In any case, it is useful to know as precisely as possible how friction phenomena arise –...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Closing the Sustainability Circle: Protection of Food with Biobased Materials

21.07.2017 | Event News

»We are bringing Additive Manufacturing to SMEs«

19.07.2017 | Event News

The technology with a feel for feelings

12.07.2017 | Event News

 
Latest News

NASA looks to solar eclipse to help understand Earth's energy system

21.07.2017 | Earth Sciences

Stanford researchers develop a new type of soft, growing robot

21.07.2017 | Power and Electrical Engineering

Vortex photons from electrons in circular motion

21.07.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>