Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:


Galaxies get up close and personal

VST captures collisions in young galaxy cluster

The Hercules galaxy cluster (also known as Abell 2151) lies about 500 million light-years away in the constellation of Hercules. It is unlike other nearby galactic assemblies in many ways.

This new image, taken with the VLT Survey Telescope (VST) shows a wide variety of interacting galaxies in the young Hercules galaxy cluster. The sharpness of the picture and the sheer number of objects captured -- across a full square degree -- in less than three hours of observations attest to the great power of the VST and its OmegaCAM camera to explore the nearby universe. This picture has been cropped and does not cover the full VST field of view. Credit: ESO/INAF-VST/OmegaCAM. Acknowledgement: OmegaCen/Astro-WISE/Kapteyn Institute

As well as being rather irregular in shape, it contains a wide variety of galaxy types, particularly young, star-forming spiral galaxies, and there are no giant elliptical galaxies in sight.

The new image was taken with the VST, the most recent addition to ESO's Paranal Observatory in Chile (eso1119 - The VST is a survey telescope equipped with OmegaCAM, a 268-megapixel camera that provides images covering very large areas on the sky. Normally only small telescopes can image large objects such as this in a single shot, but the 2.6-metre VST not only has a wide field, but can also exploit the superb conditions on Paranal to simultaneously obtain very sharp and deep images quickly.

Galaxy pairs getting up close and personal and on their way to merging into single, larger galaxies can be seen all over this image. The numerous interactions, and the large number of gas-rich, star-forming spiral galaxies in the cluster, make the members of the Hercules cluster look like the young galaxies of the more distant Universe [1]. Because of this similarity, astronomers believe that the Hercules galaxy cluster is a relatively young cluster. It is a vibrant and dynamic swarm of galaxies that will one day mature into one more similar to the older galaxy clusters that are more typical of our galactic neighbourhood.

Galaxy clusters are formed when smaller groups of galaxies come together due to the pull of their gravity. As these groups get closer to each other, the cluster becomes more compact and more spherical in shape. At the same time, the galaxies themselves get closer together and many start to interact. Even if spiral galaxies are dominant in the initial groups, the galactic collisions eventually distort their spiral structure and strip off their gas and dust, quenching most star formation. For this reason, most of the galaxies in a mature cluster are elliptical or irregular in shape. One or two large elliptical galaxies, formed from the merger of smaller galaxies and permeated by old stars, usually reside at the centres of these old clusters.

The Hercules galaxy cluster is believed to be a collection of at least three small clusters and groups of galaxies that are currently being assembled into a larger structure. Furthermore, the cluster itself is merging with other large clusters to form a galaxy supercluster. These giant collections of clusters are some of the largest structures in the Universe. The wide field of view and image quality of OmegaCAM on the VST make it ideal for studying the outskirts of galaxy clusters where the poorly-understood interactions between clusters are taking place.

This beautiful image shows not only the galaxies of the Hercules galaxy cluster, but also many faint and fuzzy objects in the background, which are galaxies that are much further away from us. Closer to home, several brilliant Milky Way stars are also visible in the foreground and there are even a few asteroids that have left short trails as they moved slowly across the image during the exposures.


[1] Objects in the very distant Universe are seen as they were when much younger, because it takes several billion years for their light to reach us.

More information

The VST programme is a joint venture between the INAF-Osservatorio Astronomico di Capodimonte, Naples, Italy and ESO. INAF designed and built the telescope with the collaboration of leading Italian industries and ESO was responsible for the enclosure and the civil engineering works at the site. OmegaCAM, the VST's camera, was designed and built by a consortium including institutes in the Netherlands, Germany and Italy with major contributions from ESO. The facility is operated by ESO, which also archives and distributes data from the telescope.

The year 2012 marks the 50th anniversary of the founding of the European Southern Observatory (ESO). ESO is the foremost intergovernmental astronomy organisation in Europe and the world's most productive astronomical observatory. It is supported by 15 countries: Austria, Belgium, Brazil, the Czech Republic, Denmark, France, Finland, Germany, Italy, the Netherlands, Portugal, Spain, Sweden, Switzerland and the United Kingdom. ESO carries out an ambitious programme focused on the design, construction and operation of powerful ground-based observing facilities enabling astronomers to make important scientific discoveries. ESO also plays a leading role in promoting and organising cooperation in astronomical research. ESO operates three unique world-class observing sites in Chile: La Silla, Paranal and Chajnantor. At Paranal, ESO operates the Very Large Telescope, the world's most advanced visible-light astronomical observatory and two survey telescopes. VISTA works in the infrared and is the world's largest survey telescope and the VLT Survey Telescope is the largest telescope designed to exclusively survey the skies in visible light. ESO is the European partner of a revolutionary astronomical telescope ALMA, the largest astronomical project in existence. ESO is currently planning a 40-metre-class European Extremely Large optical/near-infrared Telescope, the E-ELT, which will become "the world's biggest eye on the sky".


- Photos of VST:

- Photos of OmegaCAM:


Richard Hook
ESO, La Silla, Paranal, E-ELT and Survey Telescopes Public Information Officer
Garching bei München, Germany
Tel: +49 89 3200 6655

Richard Hook | EurekAlert!
Further information:

More articles from Physics and Astronomy:

nachricht Light-driven atomic rotations excite magnetic waves
24.10.2016 | Max-Planck-Institut für Struktur und Dynamik der Materie

nachricht Move over, lasers: Scientists can now create holograms from neutrons, too
21.10.2016 | National Institute of Standards and Technology (NIST)

All articles from Physics and Astronomy >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Light-driven atomic rotations excite magnetic waves

Terahertz excitation of selected crystal vibrations leads to an effective magnetic field that drives coherent spin motion

Controlling functional properties by light is one of the grand goals in modern condensed matter physics and materials science. A new study now demonstrates how...

Im Focus: New 3-D wiring technique brings scalable quantum computers closer to reality

Researchers from the Institute for Quantum Computing (IQC) at the University of Waterloo led the development of a new extensible wiring technique capable of controlling superconducting quantum bits, representing a significant step towards to the realization of a scalable quantum computer.

"The quantum socket is a wiring method that uses three-dimensional wires based on spring-loaded pins to address individual qubits," said Jeremy Béjanin, a PhD...

Im Focus: Scientists develop a semiconductor nanocomposite material that moves in response to light

In a paper in Scientific Reports, a research team at Worcester Polytechnic Institute describes a novel light-activated phenomenon that could become the basis for applications as diverse as microscopic robotic grippers and more efficient solar cells.

A research team at Worcester Polytechnic Institute (WPI) has developed a revolutionary, light-activated semiconductor nanocomposite material that can be used...

Im Focus: Diamonds aren't forever: Sandia, Harvard team create first quantum computer bridge

By forcefully embedding two silicon atoms in a diamond matrix, Sandia researchers have demonstrated for the first time on a single chip all the components needed to create a quantum bridge to link quantum computers together.

"People have already built small quantum computers," says Sandia researcher Ryan Camacho. "Maybe the first useful one won't be a single giant quantum computer...

Im Focus: New Products - Highlights of COMPAMED 2016

COMPAMED has become the leading international marketplace for suppliers of medical manufacturing. The trade fair, which takes place every November and is co-located to MEDICA in Dusseldorf, has been steadily growing over the past years and shows that medical technology remains a rapidly growing market.

In 2016, the joint pavilion by the IVAM Microtechnology Network, the Product Market “High-tech for Medical Devices”, will be located in Hall 8a again and will...

All Focus news of the innovation-report >>>



Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

Agricultural Trade Developments and Potentials in Central Asia and the South Caucasus

14.10.2016 | Event News

World Health Summit – Day Three: A Call to Action

12.10.2016 | Event News

Latest News

First-time reconstruction of infectious bat influenza viruses

25.10.2016 | Life Sciences

Novel method to benchmark and improve the performance of protein measumeasurement techniques

25.10.2016 | Life Sciences

Amazon rain helps make more rain

25.10.2016 | Life Sciences

More VideoLinks >>>