Gone With the Galactic Wind: 10 Years of Chandra

But direct observation by the Chandra orbiting telescope have changed all that and led to “the first characterization of the spatial, thermal, chemical and kinetic properties of the gas in our galaxy,” Wang states.

Chandra data show, among other things, that though seemingly as ephemeral as fog, the outflowing hot gas from normal galaxies exerts a very powerful feedback force on the surroundings, preventing or slowing the infall of intergalactic gas due to gravity. “This discovery is a new key to our understanding of how galaxies work, especially how they lose mass and energy, that was not possible before Chandra,” he adds.

The astronomer catalogs the new knowledge in an article published this week in the early online edition of Proceedings of the National Academy of Sciences. Because his group has made extensive use of Chandra data, he was asked to write a review celebrating the instrument’s 10-year anniversary.

As Wang explains, galaxies like our own are made of visible stars and gas but investigating this matter and its properties using only visible light reveals only a small fraction of material actually present. “The hot gas is very hard to detect because of its low density, hence weak radiation, compared to black holes and neutron stars that accrete from their companions, which tend to overwhelm X-ray emissions from a galaxy,” he adds.

“By X-raying galaxies, we can see the invisible, and with the Chandra instrument we can detect gas that emits or absorbs X-rays, as well as such exotic objects as black holes and neutron stars that tend to emit primarily in X-rays.” X-ray tomography by the high-spectral resolution Chandra instrument has given astronomers the unprecedented opportunity to examine the amount, distribution and composition of the hot gas against bright background sources.

It has also helped to yield clues to the mystery of why there is not enough hot gas present inside or in the immediate vicinity of galaxies as predicted by current theory, in particular elements synthesized and ejected by stars. In fact, says Wang, “we find that the bulk of energy expected from the supernovae is missing as well. We conclude that this missing energy is gone with the wind, a galactic wind that blows matter to much larger regions around galaxies than previously understood.”

“Indeed, we find direct evidence for such winds and outflows in nearby galaxies. This uses another well-known capability of the Chandra, the exquisite spatial resolution, which allows us to detect discrete X-ray sources and to remove them cleanly when mapping X-ray emission in and around galaxies. The outflows are called galactic feedback, which can have profound impact on the ecosystem of the galaxies.”

“These results, compared with detailed simulations, now enable us to study how the feedback regulates the formation and evolution of galaxies,” Wang says.

Daniel Wang
413/545-2131
wqd@astro.umass.edu

Media Contact

Daniel Wang Newswise Special Wire

More Information:

http://www.umass.edu

All latest news from the category: Physics and Astronomy

This area deals with the fundamental laws and building blocks of nature and how they interact, the properties and the behavior of matter, and research into space and time and their structures.

innovations-report provides in-depth reports and articles on subjects such as astrophysics, laser technologies, nuclear, quantum, particle and solid-state physics, nanotechnologies, planetary research and findings (Mars, Venus) and developments related to the Hubble Telescope.

Back to home

Comments (0)

Write a comment

Newest articles

Superradiant atoms could push the boundaries of how precisely time can be measured

Superradiant atoms can help us measure time more precisely than ever. In a new study, researchers from the University of Copenhagen present a new method for measuring the time interval,…

Ion thermoelectric conversion devices for near room temperature

The electrode sheet of the thermoelectric device consists of ionic hydrogel, which is sandwiched between the electrodes to form, and the Prussian blue on the electrode undergoes a redox reaction…

Zap Energy achieves 37-million-degree temperatures in a compact device

New publication reports record electron temperatures for a small-scale, sheared-flow-stabilized Z-pinch fusion device. In the nine decades since humans first produced fusion reactions, only a few fusion technologies have demonstrated…

Partners & Sponsors