Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Gone With the Galactic Wind: 10 Years of Chandra

15.03.2010
When NASA launched its Chandra X-ray observing telescope into orbit in 1999, astronomers didn’t know much about the galactic winds made of wispy, multi-million-degree gas clouds that stream out from normal galaxies like our own, because they are “diffuse, gentle and unspectacular” compared to far more dramatic emanations of starbursts, recalls astronomer Q. Daniel Wang of the University of Massachusetts Amherst.

But direct observation by the Chandra orbiting telescope have changed all that and led to “the first characterization of the spatial, thermal, chemical and kinetic properties of the gas in our galaxy,” Wang states.

Chandra data show, among other things, that though seemingly as ephemeral as fog, the outflowing hot gas from normal galaxies exerts a very powerful feedback force on the surroundings, preventing or slowing the infall of intergalactic gas due to gravity. “This discovery is a new key to our understanding of how galaxies work, especially how they lose mass and energy, that was not possible before Chandra,” he adds.

The astronomer catalogs the new knowledge in an article published this week in the early online edition of Proceedings of the National Academy of Sciences. Because his group has made extensive use of Chandra data, he was asked to write a review celebrating the instrument’s 10-year anniversary.

As Wang explains, galaxies like our own are made of visible stars and gas but investigating this matter and its properties using only visible light reveals only a small fraction of material actually present. “The hot gas is very hard to detect because of its low density, hence weak radiation, compared to black holes and neutron stars that accrete from their companions, which tend to overwhelm X-ray emissions from a galaxy,” he adds.

“By X-raying galaxies, we can see the invisible, and with the Chandra instrument we can detect gas that emits or absorbs X-rays, as well as such exotic objects as black holes and neutron stars that tend to emit primarily in X-rays.” X-ray tomography by the high-spectral resolution Chandra instrument has given astronomers the unprecedented opportunity to examine the amount, distribution and composition of the hot gas against bright background sources.

It has also helped to yield clues to the mystery of why there is not enough hot gas present inside or in the immediate vicinity of galaxies as predicted by current theory, in particular elements synthesized and ejected by stars. In fact, says Wang, “we find that the bulk of energy expected from the supernovae is missing as well. We conclude that this missing energy is gone with the wind, a galactic wind that blows matter to much larger regions around galaxies than previously understood.”

“Indeed, we find direct evidence for such winds and outflows in nearby galaxies. This uses another well-known capability of the Chandra, the exquisite spatial resolution, which allows us to detect discrete X-ray sources and to remove them cleanly when mapping X-ray emission in and around galaxies. The outflows are called galactic feedback, which can have profound impact on the ecosystem of the galaxies.”

“These results, compared with detailed simulations, now enable us to study how the feedback regulates the formation and evolution of galaxies,” Wang says.

Daniel Wang
413/545-2131
wqd@astro.umass.edu

Daniel Wang | Newswise Special Wire
Further information:
http://www.umass.edu

More articles from Physics and Astronomy:

nachricht Breakthrough with a chain of gold atoms
17.02.2017 | Universität Konstanz

nachricht New functional principle to generate the „third harmonic“
16.02.2017 | Laser Zentrum Hannover e.V.

All articles from Physics and Astronomy >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Breakthrough with a chain of gold atoms

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

Im Focus: DNA repair: a new letter in the cell alphabet

Results reveal how discoveries may be hidden in scientific “blind spots”

Cells need to repair damaged DNA in our genes to prevent the development of cancer and other diseases. Our cells therefore activate and send “repair-proteins”...

Im Focus: Dresdner scientists print tomorrow’s world

The Fraunhofer IWS Dresden and Technische Universität Dresden inaugurated their jointly operated Center for Additive Manufacturing Dresden (AMCD) with a festive ceremony on February 7, 2017. Scientists from various disciplines perform research on materials, additive manufacturing processes and innovative technologies, which build up components in a layer by layer process. This technology opens up new horizons for component design and combinations of functions. For example during fabrication, electrical conductors and sensors are already able to be additively manufactured into components. They provide information about stress conditions of a product during operation.

The 3D-printing technology, or additive manufacturing as it is often called, has long made the step out of scientific research laboratories into industrial...

Im Focus: Mimicking nature's cellular architectures via 3-D printing

Research offers new level of control over the structure of 3-D printed materials

Nature does amazing things with limited design materials. Grass, for example, can support its own weight, resist strong wind loads, and recover after being...

Im Focus: Three Magnetic States for Each Hole

Nanometer-scale magnetic perforated grids could create new possibilities for computing. Together with international colleagues, scientists from the Helmholtz Zentrum Dresden-Rossendorf (HZDR) have shown how a cobalt grid can be reliably programmed at room temperature. In addition they discovered that for every hole ("antidot") three magnetic states can be configured. The results have been published in the journal "Scientific Reports".

Physicist Dr. Rantej Bali from the HZDR, together with scientists from Singapore and Australia, designed a special grid structure in a thin layer of cobalt in...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Booth and panel discussion – The Lindau Nobel Laureate Meetings at the AAAS 2017 Annual Meeting

13.02.2017 | Event News

Complex Loading versus Hidden Reserves

10.02.2017 | Event News

International Conference on Crystal Growth in Freiburg

09.02.2017 | Event News

 
Latest News

Biocompatible 3-D tracking system has potential to improve robot-assisted surgery

17.02.2017 | Medical Engineering

Real-time MRI analysis powered by supercomputers

17.02.2017 | Medical Engineering

Antibiotic effective against drug-resistant bacteria in pediatric skin infections

17.02.2017 | Health and Medicine

VideoLinks
B2B-VideoLinks
More VideoLinks >>>