Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Fuzziness on the Road to Physics' Grand Unification Theory

08.10.2008
Leave it to hypothesized gravity to weigh down what physicists have thought for 30 years. If theoretical physicists, led by the University of Oregon's Stephen Hsu, are right, the idea that nature's forces merge under grand unification has grown fuzzy.

At issue are grand unified theories that first appeared in the 1970s. They have suggested that, at short distances or high-energy scales, electromagnetic forces, strong forces, which bind quarks in protons and neutrons, and weak forces, which drive nuclear decay, will coalesce into a single unified field. Indications of this idea could appear at the Large Hadron Collider (LHC).

Hsu and colleagues applied advanced computations to qualities that might exist in quantum gravity in distance-shortened, high-energy interactions. Working with Hsu on the project, to be described in the journal Physical Review Letters, were UO doctoral student David Reeb and Xavier Calmet, a former postdoc in the UO's Institute of Theoretical Science and now of the Center for Particle Physics and Phenomenology at Catholic University of Louvain in Belgium.

"The energy scale at which these three forces become equivalent is probably very high," Hsu said. "We do not have a direct way to probe what happens. We cannot actually produce the energies or produce the particles necessary to directly test whether unification occurs, so we look for hints at lower energy scales -- and look at how the interactions change. We have seen indications that these three interactions are starting to unify. If you extrapolate these trends to very high energy, it looks like, in certain models or theories, they could unify -- all based on experimental data. If grand unification exists, it might be shown at the LHC."

Enter quantum gravity. It's not the physical law version as seen under of Isaac Newton's apple tree but rather a physical theory about gravitational interactions of matter and energy that may be vital to grand unification. This is the realm of space time and its curvature. Hsu's team looked closely at quantum gravity and the interactions of the forces at work using extrapolations built by mathematical magnification.

"It is believed that at short distances and high energies the actual structure of space time will start to exhibit quantum fluctuations," Hsu said. "So there would be fuzziness in the nature of space and time. The scale at which this grand unification might occur is getting kind of close to the scale where quantum gravity might exhibit this kind of fuzziness."

The fuzziness, researchers theorize, blurs the envisioned highway to unification. The blurring, they say, is brought about in the interplay of nature's forces, where, in certain models of unification, there may be thousands of yet-unseen particles at the boundary, affecting the highway itself.

"The interplay of these forces, in our theory, creates more uncertainty than people previously though could exist in this whole discussion," said Reeb, who performed much of the number crunching. "It's an important result, because it is telling people that when you look at the low-energy data and you extrapolate them you may have to be much more careful than was thought."

If grand unification is to be found, the discovery would move particle physics closer to the proposed idea of supersymmetry, whereby particles at each level have corresponding qualities in another level as they spin. "Our research says there are more uncertainties to this argument than previously believed," Reeb said.

The bottom line, Hsu said, is that as data is generated in the LHC, interpretations as to relationships to grand unification may be more difficult for particle physicists to pin down.

The U.S. Department of Energy provided funding for the research.

About the University of Oregon
The University of Oregon is a world-class teaching and research institution and Oregon's flagship public university. The UO is a member of the Association of American Universities (AAU), an organization made up of 62 of the leading public and private research institutions in the United States and Canada. Membership in the AAU is by invitation only. The University of Oregon is one of only two AAU members in the Pacific Northwest.

Sources: Stephen D.H. Hsu, professor of physics, College of Arts and Sciences, 541-346-5128, hsu@uoregon.edu; David F. Reeb, physics doctoral student, dreeb@uoregon.edu

Jim Barlow | Newswise Science News
Further information:
http://www.uoregon.edu

More articles from Physics and Astronomy:

nachricht Engineering team images tiny quasicrystals as they form
18.08.2017 | Cornell University

nachricht Astrophysicists explain the mysterious behavior of cosmic rays
18.08.2017 | Moscow Institute of Physics and Technology

All articles from Physics and Astronomy >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Fizzy soda water could be key to clean manufacture of flat wonder material: Graphene

Whether you call it effervescent, fizzy, or sparkling, carbonated water is making a comeback as a beverage. Aside from quenching thirst, researchers at the University of Illinois at Urbana-Champaign have discovered a new use for these "bubbly" concoctions that will have major impact on the manufacturer of the world's thinnest, flattest, and one most useful materials -- graphene.

As graphene's popularity grows as an advanced "wonder" material, the speed and quality at which it can be manufactured will be paramount. With that in mind,...

Im Focus: Exotic quantum states made from light: Physicists create optical “wells” for a super-photon

Physicists at the University of Bonn have managed to create optical hollows and more complex patterns into which the light of a Bose-Einstein condensate flows. The creation of such highly low-loss structures for light is a prerequisite for complex light circuits, such as for quantum information processing for a new generation of computers. The researchers are now presenting their results in the journal Nature Photonics.

Light particles (photons) occur as tiny, indivisible portions. Many thousands of these light portions can be merged to form a single super-photon if they are...

Im Focus: Circular RNA linked to brain function

For the first time, scientists have shown that circular RNA is linked to brain function. When a RNA molecule called Cdr1as was deleted from the genome of mice, the animals had problems filtering out unnecessary information – like patients suffering from neuropsychiatric disorders.

While hundreds of circular RNAs (circRNAs) are abundant in mammalian brains, one big question has remained unanswered: What are they actually good for? In the...

Im Focus: RAVAN CubeSat measures Earth's outgoing energy

An experimental small satellite has successfully collected and delivered data on a key measurement for predicting changes in Earth's climate.

The Radiometer Assessment using Vertically Aligned Nanotubes (RAVAN) CubeSat was launched into low-Earth orbit on Nov. 11, 2016, in order to test new...

Im Focus: Scientists shine new light on the “other high temperature superconductor”

A study led by scientists of the Max Planck Institute for the Structure and Dynamics of Matter (MPSD) at the Center for Free-Electron Laser Science in Hamburg presents evidence of the coexistence of superconductivity and “charge-density-waves” in compounds of the poorly-studied family of bismuthates. This observation opens up new perspectives for a deeper understanding of the phenomenon of high-temperature superconductivity, a topic which is at the core of condensed matter research since more than 30 years. The paper by Nicoletti et al has been published in the PNAS.

Since the beginning of the 20th century, superconductivity had been observed in some metals at temperatures only a few degrees above the absolute zero (minus...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Call for Papers – ICNFT 2018, 5th International Conference on New Forming Technology

16.08.2017 | Event News

Sustainability is the business model of tomorrow

04.08.2017 | Event News

Clash of Realities 2017: Registration now open. International Conference at TH Köln

26.07.2017 | Event News

 
Latest News

A Map of the Cell’s Power Station

18.08.2017 | Life Sciences

Engineering team images tiny quasicrystals as they form

18.08.2017 | Physics and Astronomy

Researchers printed graphene-like materials with inkjet

18.08.2017 | Materials Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>