Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:


Fuzziness on the Road to Physics' Grand Unification Theory

Leave it to hypothesized gravity to weigh down what physicists have thought for 30 years. If theoretical physicists, led by the University of Oregon's Stephen Hsu, are right, the idea that nature's forces merge under grand unification has grown fuzzy.

At issue are grand unified theories that first appeared in the 1970s. They have suggested that, at short distances or high-energy scales, electromagnetic forces, strong forces, which bind quarks in protons and neutrons, and weak forces, which drive nuclear decay, will coalesce into a single unified field. Indications of this idea could appear at the Large Hadron Collider (LHC).

Hsu and colleagues applied advanced computations to qualities that might exist in quantum gravity in distance-shortened, high-energy interactions. Working with Hsu on the project, to be described in the journal Physical Review Letters, were UO doctoral student David Reeb and Xavier Calmet, a former postdoc in the UO's Institute of Theoretical Science and now of the Center for Particle Physics and Phenomenology at Catholic University of Louvain in Belgium.

"The energy scale at which these three forces become equivalent is probably very high," Hsu said. "We do not have a direct way to probe what happens. We cannot actually produce the energies or produce the particles necessary to directly test whether unification occurs, so we look for hints at lower energy scales -- and look at how the interactions change. We have seen indications that these three interactions are starting to unify. If you extrapolate these trends to very high energy, it looks like, in certain models or theories, they could unify -- all based on experimental data. If grand unification exists, it might be shown at the LHC."

Enter quantum gravity. It's not the physical law version as seen under of Isaac Newton's apple tree but rather a physical theory about gravitational interactions of matter and energy that may be vital to grand unification. This is the realm of space time and its curvature. Hsu's team looked closely at quantum gravity and the interactions of the forces at work using extrapolations built by mathematical magnification.

"It is believed that at short distances and high energies the actual structure of space time will start to exhibit quantum fluctuations," Hsu said. "So there would be fuzziness in the nature of space and time. The scale at which this grand unification might occur is getting kind of close to the scale where quantum gravity might exhibit this kind of fuzziness."

The fuzziness, researchers theorize, blurs the envisioned highway to unification. The blurring, they say, is brought about in the interplay of nature's forces, where, in certain models of unification, there may be thousands of yet-unseen particles at the boundary, affecting the highway itself.

"The interplay of these forces, in our theory, creates more uncertainty than people previously though could exist in this whole discussion," said Reeb, who performed much of the number crunching. "It's an important result, because it is telling people that when you look at the low-energy data and you extrapolate them you may have to be much more careful than was thought."

If grand unification is to be found, the discovery would move particle physics closer to the proposed idea of supersymmetry, whereby particles at each level have corresponding qualities in another level as they spin. "Our research says there are more uncertainties to this argument than previously believed," Reeb said.

The bottom line, Hsu said, is that as data is generated in the LHC, interpretations as to relationships to grand unification may be more difficult for particle physicists to pin down.

The U.S. Department of Energy provided funding for the research.

About the University of Oregon
The University of Oregon is a world-class teaching and research institution and Oregon's flagship public university. The UO is a member of the Association of American Universities (AAU), an organization made up of 62 of the leading public and private research institutions in the United States and Canada. Membership in the AAU is by invitation only. The University of Oregon is one of only two AAU members in the Pacific Northwest.

Sources: Stephen D.H. Hsu, professor of physics, College of Arts and Sciences, 541-346-5128,; David F. Reeb, physics doctoral student,

Jim Barlow | Newswise Science News
Further information:

More articles from Physics and Astronomy:

nachricht Move over, lasers: Scientists can now create holograms from neutrons, too
21.10.2016 | National Institute of Standards and Technology (NIST)

nachricht Finding the lightest superdeformed triaxial atomic nucleus
20.10.2016 | The Henryk Niewodniczanski Institute of Nuclear Physics Polish Academy of Sciences

All articles from Physics and Astronomy >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: New 3-D wiring technique brings scalable quantum computers closer to reality

Researchers from the Institute for Quantum Computing (IQC) at the University of Waterloo led the development of a new extensible wiring technique capable of controlling superconducting quantum bits, representing a significant step towards to the realization of a scalable quantum computer.

"The quantum socket is a wiring method that uses three-dimensional wires based on spring-loaded pins to address individual qubits," said Jeremy Béjanin, a PhD...

Im Focus: Scientists develop a semiconductor nanocomposite material that moves in response to light

In a paper in Scientific Reports, a research team at Worcester Polytechnic Institute describes a novel light-activated phenomenon that could become the basis for applications as diverse as microscopic robotic grippers and more efficient solar cells.

A research team at Worcester Polytechnic Institute (WPI) has developed a revolutionary, light-activated semiconductor nanocomposite material that can be used...

Im Focus: Diamonds aren't forever: Sandia, Harvard team create first quantum computer bridge

By forcefully embedding two silicon atoms in a diamond matrix, Sandia researchers have demonstrated for the first time on a single chip all the components needed to create a quantum bridge to link quantum computers together.

"People have already built small quantum computers," says Sandia researcher Ryan Camacho. "Maybe the first useful one won't be a single giant quantum computer...

Im Focus: New Products - Highlights of COMPAMED 2016

COMPAMED has become the leading international marketplace for suppliers of medical manufacturing. The trade fair, which takes place every November and is co-located to MEDICA in Dusseldorf, has been steadily growing over the past years and shows that medical technology remains a rapidly growing market.

In 2016, the joint pavilion by the IVAM Microtechnology Network, the Product Market “High-tech for Medical Devices”, will be located in Hall 8a again and will...

Im Focus: Ultra-thin ferroelectric material for next-generation electronics

'Ferroelectric' materials can switch between different states of electrical polarization in response to an external electric field. This flexibility means they show promise for many applications, for example in electronic devices and computer memory. Current ferroelectric materials are highly valued for their thermal and chemical stability and rapid electro-mechanical responses, but creating a material that is scalable down to the tiny sizes needed for technologies like silicon-based semiconductors (Si-based CMOS) has proven challenging.

Now, Hiroshi Funakubo and co-workers at the Tokyo Institute of Technology, in collaboration with researchers across Japan, have conducted experiments to...

All Focus news of the innovation-report >>>



Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

Agricultural Trade Developments and Potentials in Central Asia and the South Caucasus

14.10.2016 | Event News

World Health Summit – Day Three: A Call to Action

12.10.2016 | Event News

Latest News

Resolving the mystery of preeclampsia

21.10.2016 | Health and Medicine

Stanford researchers create new special-purpose computer that may someday save us billions

21.10.2016 | Information Technology

From ancient fossils to future cars

21.10.2016 | Materials Sciences

More VideoLinks >>>