Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Fuzziness on the Road to Physics' Grand Unification Theory

08.10.2008
Leave it to hypothesized gravity to weigh down what physicists have thought for 30 years. If theoretical physicists, led by the University of Oregon's Stephen Hsu, are right, the idea that nature's forces merge under grand unification has grown fuzzy.

At issue are grand unified theories that first appeared in the 1970s. They have suggested that, at short distances or high-energy scales, electromagnetic forces, strong forces, which bind quarks in protons and neutrons, and weak forces, which drive nuclear decay, will coalesce into a single unified field. Indications of this idea could appear at the Large Hadron Collider (LHC).

Hsu and colleagues applied advanced computations to qualities that might exist in quantum gravity in distance-shortened, high-energy interactions. Working with Hsu on the project, to be described in the journal Physical Review Letters, were UO doctoral student David Reeb and Xavier Calmet, a former postdoc in the UO's Institute of Theoretical Science and now of the Center for Particle Physics and Phenomenology at Catholic University of Louvain in Belgium.

"The energy scale at which these three forces become equivalent is probably very high," Hsu said. "We do not have a direct way to probe what happens. We cannot actually produce the energies or produce the particles necessary to directly test whether unification occurs, so we look for hints at lower energy scales -- and look at how the interactions change. We have seen indications that these three interactions are starting to unify. If you extrapolate these trends to very high energy, it looks like, in certain models or theories, they could unify -- all based on experimental data. If grand unification exists, it might be shown at the LHC."

Enter quantum gravity. It's not the physical law version as seen under of Isaac Newton's apple tree but rather a physical theory about gravitational interactions of matter and energy that may be vital to grand unification. This is the realm of space time and its curvature. Hsu's team looked closely at quantum gravity and the interactions of the forces at work using extrapolations built by mathematical magnification.

"It is believed that at short distances and high energies the actual structure of space time will start to exhibit quantum fluctuations," Hsu said. "So there would be fuzziness in the nature of space and time. The scale at which this grand unification might occur is getting kind of close to the scale where quantum gravity might exhibit this kind of fuzziness."

The fuzziness, researchers theorize, blurs the envisioned highway to unification. The blurring, they say, is brought about in the interplay of nature's forces, where, in certain models of unification, there may be thousands of yet-unseen particles at the boundary, affecting the highway itself.

"The interplay of these forces, in our theory, creates more uncertainty than people previously though could exist in this whole discussion," said Reeb, who performed much of the number crunching. "It's an important result, because it is telling people that when you look at the low-energy data and you extrapolate them you may have to be much more careful than was thought."

If grand unification is to be found, the discovery would move particle physics closer to the proposed idea of supersymmetry, whereby particles at each level have corresponding qualities in another level as they spin. "Our research says there are more uncertainties to this argument than previously believed," Reeb said.

The bottom line, Hsu said, is that as data is generated in the LHC, interpretations as to relationships to grand unification may be more difficult for particle physicists to pin down.

The U.S. Department of Energy provided funding for the research.

About the University of Oregon
The University of Oregon is a world-class teaching and research institution and Oregon's flagship public university. The UO is a member of the Association of American Universities (AAU), an organization made up of 62 of the leading public and private research institutions in the United States and Canada. Membership in the AAU is by invitation only. The University of Oregon is one of only two AAU members in the Pacific Northwest.

Sources: Stephen D.H. Hsu, professor of physics, College of Arts and Sciences, 541-346-5128, hsu@uoregon.edu; David F. Reeb, physics doctoral student, dreeb@uoregon.edu

Jim Barlow | Newswise Science News
Further information:
http://www.uoregon.edu

More articles from Physics and Astronomy:

nachricht New NASA study improves search for habitable worlds
20.10.2017 | NASA/Goddard Space Flight Center

nachricht Physics boosts artificial intelligence methods
19.10.2017 | California Institute of Technology

All articles from Physics and Astronomy >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Neutron star merger directly observed for the first time

University of Maryland researchers contribute to historic detection of gravitational waves and light created by event

On August 17, 2017, at 12:41:04 UTC, scientists made the first direct observation of a merger between two neutron stars--the dense, collapsed cores that remain...

Im Focus: Breaking: the first light from two neutron stars merging

Seven new papers describe the first-ever detection of light from a gravitational wave source. The event, caused by two neutron stars colliding and merging together, was dubbed GW170817 because it sent ripples through space-time that reached Earth on 2017 August 17. Around the world, hundreds of excited astronomers mobilized quickly and were able to observe the event using numerous telescopes, providing a wealth of new data.

Previous detections of gravitational waves have all involved the merger of two black holes, a feat that won the 2017 Nobel Prize in Physics earlier this month....

Im Focus: Smart sensors for efficient processes

Material defects in end products can quickly result in failures in many areas of industry, and have a massive impact on the safe use of their products. This is why, in the field of quality assurance, intelligent, nondestructive sensor systems play a key role. They allow testing components and parts in a rapid and cost-efficient manner without destroying the actual product or changing its surface. Experts from the Fraunhofer IZFP in Saarbrücken will be presenting two exhibits at the Blechexpo in Stuttgart from 7–10 November 2017 that allow fast, reliable, and automated characterization of materials and detection of defects (Hall 5, Booth 5306).

When quality testing uses time-consuming destructive test methods, it can result in enormous costs due to damaging or destroying the products. And given that...

Im Focus: Cold molecules on collision course

Using a new cooling technique MPQ scientists succeed at observing collisions in a dense beam of cold and slow dipolar molecules.

How do chemical reactions proceed at extremely low temperatures? The answer requires the investigation of molecular samples that are cold, dense, and slow at...

Im Focus: Shrinking the proton again!

Scientists from the Max Planck Institute of Quantum Optics, using high precision laser spectroscopy of atomic hydrogen, confirm the surprisingly small value of the proton radius determined from muonic hydrogen.

It was one of the breakthroughs of the year 2010: Laser spectroscopy of muonic hydrogen resulted in a value for the proton charge radius that was significantly...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

ASEAN Member States discuss the future role of renewable energy

17.10.2017 | Event News

World Health Summit 2017: International experts set the course for the future of Global Health

10.10.2017 | Event News

Climate Engineering Conference 2017 Opens in Berlin

10.10.2017 | Event News

 
Latest News

Terahertz spectroscopy goes nano

20.10.2017 | Information Technology

Strange but true: Turning a material upside down can sometimes make it softer

20.10.2017 | Materials Sciences

NRL clarifies valley polarization for electronic and optoelectronic technologies

20.10.2017 | Interdisciplinary Research

VideoLinks
B2B-VideoLinks
More VideoLinks >>>