Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

The future of ion traps

08.03.2013
Technology will continue to be a leader in the development of quantum computing architectures

Recently Science Magazine invited JQI fellow Chris Monroe and Duke Professor Jungsang Kim to speculate on ion trap technology as a scalable option for quantum information processing.


Surface trap fabricated by Sandia National Labs, supported by IARPA. This type of trap has been used to capture ions at JQI and Duke University, as well as other institutions. The image shown here appears on the cover of this week's issue of Science Magazine. Credit and permissions, contact JQI


Segmented razor blade trap used to trap ions at JQI. Credit and permissions, contact JQI

The article is highlighted on the cover of this week's issue, which is dedicated to quantum information. The cover portrays a photograph of a surface trap that was fabricated by Sandia National Labs and used to trap ions at JQI and Duke, among other laboratories.

Trapped atomic ions are a promising architecture that satisfies many of the critical requirements for constructing a quantum computer. At the heart of quantum computers are qubits, systems maintained in two or more quantum states simultaneously. Here, the qubits are manifested in the internal energy levels of the ions, and are manipulated through laser and microwave radiation. These technologies are a key factor in the success of atomic ions: scientists can set the frequency of the radiation to match that of the ion's energy level spacings with extreme precision.

The qubits have long coherence time -- meaning they can be placed in quantum states and remain that way long enough to perform calculations. The qubit's states are not sensitive to ambient disturbances like magnetic fields, giving them inherent protection from the destructive environment.

Additionally, the ions are in a vacuum of lower than 10-11 torr. This is about 100 trillion times lower than atmospheric pressure. To visualize this daunting number, imagine light particles like hydrogen or nitrogen in a vacuum chamber. After special pumps remove most of the air, there are so few molecules left that before one molecule will collide with another, it will typically travel a distance comparable to the circumference of the earth. At atmospheric pressure, even though we can't see them with our eyes, there are so many molecules floating about that they only travel about a hundredth the width of a human hair before they bump into a neighboring particle.

Scientists want to go even further. Using cryogenics (cooling to near absolute zero temperature), they expect to push a few more factors of ten lower in pressure. Cooling the system is effective because it makes the molecules stick to the walls, thus removing them from the region where the ions rest.

Ion traps themselves were invented more than a half-century ago, but researchers have implemented new technologies in order to store large ion crystals and shuttle ions around as quantum operations are executed. Professionally micro-fabricated devices, like the one shown on the cover, resemble traditional computer components. Some researchers are also integrating optics on-board the traps. Although quantum logic operations in such chip traps remain elusive, the obstacles are not prohibitive. In the US, researchers at institutions such as NIST (Boulder), Sandia National Labs, Georgia Tech Research Institute, JQI, Duke, MIT, and others are now, often collaboratively, fabricating and testing these technologies.

Monroe and Kim are part of a larger collaboration called MUSIQC, which stands for Modular Universal Scalable Ion-trap Quantum Computer, and is supported by the Intelligence Advance Research Projects Activity (IARPA). This program focuses on building the components necessary for a practical quantum computer. The effort involves national labs, universities, and even private small businesses.

Emily Edwards | EurekAlert!
Further information:
http://jqi.umd.edu/
http://jqi.umd.edu/news/future-ion-traps

More articles from Physics and Astronomy:

nachricht Squeezing light at the nanoscale
17.06.2018 | Harvard John A. Paulson School of Engineering and Applied Sciences

nachricht The Fraunhofer IAF is a »Landmark in the Land of Ideas«
15.06.2018 | Fraunhofer-Institut für Angewandte Festkörperphysik IAF

All articles from Physics and Astronomy >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: AchemAsia 2019 will take place in Shanghai

Moving into its fourth decade, AchemAsia is setting out for new horizons: The International Expo and Innovation Forum for Sustainable Chemical Production will take place from 21-23 May 2019 in Shanghai, China. With an updated event profile, the eleventh edition focusses on topics that are especially relevant for the Chinese process industry, putting a strong emphasis on sustainability and innovation.

Founded in 1989 as a spin-off of ACHEMA to cater to the needs of China’s then developing industry, AchemAsia has since grown into a platform where the latest...

Im Focus: First real-time test of Li-Fi utilization for the industrial Internet of Things

The BMBF-funded OWICELLS project was successfully completed with a final presentation at the BMW plant in Munich. The presentation demonstrated a Li-Fi communication with a mobile robot, while the robot carried out usual production processes (welding, moving and testing parts) in a 5x5m² production cell. The robust, optical wireless transmission is based on spatial diversity; in other words, data is sent and received simultaneously by several LEDs and several photodiodes. The system can transmit data at more than 100 Mbit/s and five milliseconds latency.

Modern production technologies in the automobile industry must become more flexible in order to fulfil individual customer requirements.

Im Focus: Sharp images with flexible fibers

An international team of scientists has discovered a new way to transfer image information through multimodal fibers with almost no distortion - even if the fiber is bent. The results of the study, to which scientist from the Leibniz-Institute of Photonic Technology Jena (Leibniz IPHT) contributed, were published on 6thJune in the highly-cited journal Physical Review Letters.

Endoscopes allow doctors to see into a patient’s body like through a keyhole. Typically, the images are transmitted via a bundle of several hundreds of optical...

Im Focus: Photoexcited graphene puzzle solved

A boost for graphene-based light detectors

Light detection and control lies at the heart of many modern device applications, such as smartphone cameras. Using graphene as a light-sensitive material for...

Im Focus: Water is not the same as water

Water molecules exist in two different forms with almost identical physical properties. For the first time, researchers have succeeded in separating the two forms to show that they can exhibit different chemical reactivities. These results were reported by researchers from the University of Basel and their colleagues in Hamburg in the scientific journal Nature Communications.

From a chemical perspective, water is a molecule in which a single oxygen atom is linked to two hydrogen atoms. It is less well known that water exists in two...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

Munich conference on asteroid detection, tracking and defense

13.06.2018 | Event News

2nd International Baltic Earth Conference in Denmark: “The Baltic Sea region in Transition”

08.06.2018 | Event News

ISEKI_Food 2018: Conference with Holistic View of Food Production

05.06.2018 | Event News

 
Latest News

A sprinkle of platinum nanoparticles onto graphene makes brain probes more sensitive

15.06.2018 | Materials Sciences

100 % Organic Farming in Bhutan – a Realistic Target?

15.06.2018 | Ecology, The Environment and Conservation

Perovskite-silicon solar cell research collaboration hits 25.2% efficiency

15.06.2018 | Power and Electrical Engineering

VideoLinks
Science & Research
Overview of more VideoLinks >>>