Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Future Evidence for Extraterrestrial Life Might Come from Dying Stars

26.02.2013
Even dying stars could host planets with life - and if such life exists, we might be able to detect it within the next decade.
This encouraging result comes from a new theoretical study of Earth-like planets orbiting white dwarf stars. Researchers found that we could detect oxygen in the atmosphere of a white dwarf's planet much more easily than for an Earth-like planet orbiting a Sun-like star.

"In the quest for extraterrestrial biological signatures, the first stars we study should be white dwarfs," said Avi Loeb, theorist at the Harvard-Smithsonian Center for Astrophysics (CfA) and director of the Institute for Theory and Computation.

When a star like the Sun dies, it puffs off its outer layers, leaving behind a hot core called a white dwarf. A typical white dwarf is about the size of Earth. It slowly cools and fades over time, but it can retain heat long enough to warm a nearby world for billions of years.

Since a white dwarf is much smaller and fainter than the Sun, a planet would have to be much closer in to be habitable with liquid water on its surface. A habitable planet would circle the white dwarf once every 10 hours at a distance of about a million miles.

Before a star becomes a white dwarf it swells into a red giant, engulfing and destroying any nearby planets. Therefore, a planet would have to arrive in the habitable zone after the star evolved into a white dwarf. A planet could form from leftover dust and gas (making it a second-generation world), or migrate inward from a larger distance.

If planets exist in the habitable zones of white dwarfs, we would need to find them before we could study them. The abundance of heavy elements on the surface of white dwarfs suggests that a significant fraction of them have rocky planets. Loeb and his colleague Dan Maoz (Tel Aviv University) estimate that a survey of the 500 closest white dwarfs could spot one or more habitable Earths.

The best method for finding such planets is a transit search - looking for a star that dims as an orbiting planet crosses in front of it. Since a white dwarf is about the same size as Earth, an Earth-sized planet would block a large fraction of its light and create an obvious signal.

More importantly, we can only study the atmospheres of transiting planets. When the white dwarf's light shines through the ring of air that surrounds the planet's silhouetted disk, the atmosphere absorbs some starlight. This leaves chemical fingerprints showing whether that air contains water vapor, or even signatures of life, such as oxygen.

Astronomers are particularly interested in finding oxygen because the oxygen in the Earth's atmosphere is continuously replenished, through photosynthesis, by plant life. Were all life to cease on Earth, our atmosphere would quickly become devoid of oxygen, which would dissolve in the oceans and oxidize the surface. Thus, the presence of large quantities of oxygen in the atmosphere of a distant planet would signal the likely presence of life there.

NASA's James Webb Space Telescope (JWST), scheduled for launch by the end of this decade, promises to sniff out the gases of these alien worlds. Loeb and Maoz created a synthetic spectrum, replicating what JWST would see if it examined a habitable planet orbiting a white dwarf. They found that both oxygen and water vapor would be detectable with only a few hours of total observation time.

"JWST offers the best hope of finding an inhabited planet in the near future," said Maoz.

Recent research by CfA astronomers Courtney Dressing and David Charbonneau showed that the closest habitable planet is likely to orbit a red dwarf star (a cool, low-mass star undergoing nuclear fusion). Since a red dwarf, although smaller and fainter than the Sun, is much larger and brighter than a white dwarf, its glare would overwhelm the faint signal from an orbiting planet's atmosphere. JWST would have to observe hundreds of hours of transits to have any hope of analyzing the atmosphere's composition.

"Although the closest habitable planet might orbit a red dwarf star, the closest one we can easily prove to be life-bearing might orbit a white dwarf," said Loeb.

Their paper has been accepted for publication in the Monthly Notices of the Royal Astronomical Society and is available online.

Headquartered in Cambridge, Mass., the Harvard-Smithsonian Center for Astrophysics (CfA) is a joint collaboration between the Smithsonian Astrophysical Observatory and the Harvard College Observatory. CfA scientists, organized into six research divisions, study the origin, evolution and ultimate fate of the universe.

For more information, contact:

David A. Aguilar
Director of Public Affairs
Harvard-Smithsonian Center for Astrophysics
617-495-7462
daguilar@cfa.harvard.edu
Christine Pulliam
Public Affairs Specialist
Harvard-Smithsonian Center for Astrophysics
617-495-7463
cpulliam@cfa.harvard.edu

Christine Pulliam | EurekAlert!
Further information:
http://www.cfa.harvard.edu

More articles from Physics and Astronomy:

nachricht Astronomers find unexpected, dust-obscured star formation in distant galaxy
24.03.2017 | University of Massachusetts at Amherst

nachricht Gravitational wave kicks monster black hole out of galactic core
24.03.2017 | NASA/Goddard Space Flight Center

All articles from Physics and Astronomy >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Giant Magnetic Fields in the Universe

Astronomers from Bonn and Tautenburg in Thuringia (Germany) used the 100-m radio telescope at Effelsberg to observe several galaxy clusters. At the edges of these large accumulations of dark matter, stellar systems (galaxies), hot gas, and charged particles, they found magnetic fields that are exceptionally ordered over distances of many million light years. This makes them the most extended magnetic fields in the universe known so far.

The results will be published on March 22 in the journal „Astronomy & Astrophysics“.

Galaxy clusters are the largest gravitationally bound structures in the universe. With a typical extent of about 10 million light years, i.e. 100 times the...

Im Focus: Tracing down linear ubiquitination

Researchers at the Goethe University Frankfurt, together with partners from the University of Tübingen in Germany and Queen Mary University as well as Francis Crick Institute from London (UK) have developed a novel technology to decipher the secret ubiquitin code.

Ubiquitin is a small protein that can be linked to other cellular proteins, thereby controlling and modulating their functions. The attachment occurs in many...

Im Focus: Perovskite edges can be tuned for optoelectronic performance

Layered 2D material improves efficiency for solar cells and LEDs

In the eternal search for next generation high-efficiency solar cells and LEDs, scientists at Los Alamos National Laboratory and their partners are creating...

Im Focus: Polymer-coated silicon nanosheets as alternative to graphene: A perfect team for nanoelectronics

Silicon nanosheets are thin, two-dimensional layers with exceptional optoelectronic properties very similar to those of graphene. Albeit, the nanosheets are less stable. Now researchers at the Technical University of Munich (TUM) have, for the first time ever, produced a composite material combining silicon nanosheets and a polymer that is both UV-resistant and easy to process. This brings the scientists a significant step closer to industrial applications like flexible displays and photosensors.

Silicon nanosheets are thin, two-dimensional layers with exceptional optoelectronic properties very similar to those of graphene. Albeit, the nanosheets are...

Im Focus: Researchers Imitate Molecular Crowding in Cells

Enzymes behave differently in a test tube compared with the molecular scrum of a living cell. Chemists from the University of Basel have now been able to simulate these confined natural conditions in artificial vesicles for the first time. As reported in the academic journal Small, the results are offering better insight into the development of nanoreactors and artificial organelles.

Enzymes behave differently in a test tube compared with the molecular scrum of a living cell. Chemists from the University of Basel have now been able to...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

International Land Use Symposium ILUS 2017: Call for Abstracts and Registration open

20.03.2017 | Event News

CONNECT 2017: International congress on connective tissue

14.03.2017 | Event News

ICTM Conference: Turbine Construction between Big Data and Additive Manufacturing

07.03.2017 | Event News

 
Latest News

Northern oceans pumped CO2 into the atmosphere

27.03.2017 | Earth Sciences

Fingerprint' technique spots frog populations at risk from pollution

27.03.2017 | Life Sciences

Big data approach to predict protein structure

27.03.2017 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>