Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Future 'comb on a chip': NIST's compact frequency comb could go places

27.10.2011
Laser frequency combs—extraordinarily precise tools for measuring frequencies (or colors) of light—have helped propel advances in timekeeping, trace gas detection and related physics research to new heights in the past decade.

While typical lasers operate at only a single or handful of frequencies, laser frequency combs operate simultaneously at many frequencies, approaching a million for some combs. These combs have very fine, evenly spaced "teeth," each a specific frequency, which can be used like hash marks on a ruler to measure the light emitted by lasers, atoms, stars or other objects. But frequency combs are usually bulky, delicate lab instruments—about the size of a typical suitcase—and challenging to operate, which limits their use.

Now, researchers at the National Institute of Standards and Technology (NIST) have developed a compact laser frequency comb,* a step toward user-friendly and ultimately chip-based combs that could enable new applications in astronomical searches for Earth-like planets, high-capacity telecommunications, and—if other components are miniaturized as well—portable versions of the most advanced atomic clocks. Large frequency combs are best known as the "gears" in today's room-sized versions of these clocks.

NIST's prototype micro-comb consists of a low-power semiconductor laser about the size of a shoebox and a high-quality optical cavity just 2 millimeters wide. A miniature laser like those in DVD players might be substituted in the future to squeeze the whole comb apparatus onto a microchip.

Compact frequency combs have been developed recently by a number of other research groups, but NIST's is the first to use a cavity made of fused silica, or quartz, the most common optical material. This means it could be integrated easily with other optical and photonic components, lead author Scott Papp says.

A full-size frequency comb uses a high-power, ultrafast laser.** By contrast, the new compact version relies on a low-power laser and the cavity's unusual properties. The cavity is designed to limit light dispersion and confine the light in a small space to enhance intensity and optical interactions. The infrared laser light travels in a loop inside the cavity, generating a train of very short pulses and a spectrum of additional shades of infrared light. The small cavity, with no moving parts, offers insight into basic processes of frequency combs, which are difficult to observe in large versions.

Among its desirable features, NIST's compact comb has wide spacing between the teeth—10 to 100 times wider than that found in typical larger combs. This spacing allows scientists to more easily measure and manipulate the teeth. Of particular interest to project leader Scott Diddams, the widely spaced teeth can be individually read by astronomical instruments. Portable frequency combs can thus be used as ultrastable frequency references in the search for Earth-like planets orbiting distant stars.*** Portable frequency combs can also have many other important applications. For example, because a frequency comb can simultaneously generate hundreds of telecommunication channels from a single low-power source, a micro-comb might eventually replace individual lasers now used for each channel in fiber-optic telecommunications.

"We hope this is just the beginning and look forward to bigger and better developments," Diddams says. "In the short term we want to learn if this new type of comb can one day replace ultrafast laser-based combs used with NIST's best atomic clocks. And if not, its small size will likely lead to other opportunities."

The research was supported in part by the Defense Advanced Research Projects Agency.

* S.B. Papp and S.A. Diddams. Spectral and temporal characterization of a fused-quartz microresonator optical frequency comb. Physical Review A. Forthcoming.
** See background on optical frequency combs at http://www.nist.gov/public_affairs/releases/frequency_combs.cfm.

*** See 2009 Tech Beat article, "NIST, CU to Build Instrument to Help Search for Earth-like Planets," at http://www.nist.gov/public_affairs/techbeat/tb2009_1103.htm#cu

Laura Ost | EurekAlert!
Further information:
http://www.nist.gov

More articles from Physics and Astronomy:

nachricht NASA mission surfs through waves in space to understand space weather
25.07.2017 | NASA/Goddard Space Flight Center

nachricht A new level of magnetic saturation
25.07.2017 | Georg-August-Universität Göttingen

All articles from Physics and Astronomy >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Carbon Nanotubes Turn Electrical Current into Light-emitting Quasi-particles

Strong light-matter coupling in these semiconducting tubes may hold the key to electrically pumped lasers

Light-matter quasi-particles can be generated electrically in semiconducting carbon nanotubes. Material scientists and physicists from Heidelberg University...

Im Focus: Flexible proximity sensor creates smart surfaces

Fraunhofer IPA has developed a proximity sensor made from silicone and carbon nanotubes (CNT) which detects objects and determines their position. The materials and printing process used mean that the sensor is extremely flexible, economical and can be used for large surfaces. Industry and research partners can use and further develop this innovation straight away.

At first glance, the proximity sensor appears to be nothing special: a thin, elastic layer of silicone onto which black square surfaces are printed, but these...

Im Focus: 3-D scanning with water

3-D shape acquisition using water displacement as the shape sensor for the reconstruction of complex objects

A global team of computer scientists and engineers have developed an innovative technique that more completely reconstructs challenging 3D objects. An ancient...

Im Focus: Manipulating Electron Spins Without Loss of Information

Physicists have developed a new technique that uses electrical voltages to control the electron spin on a chip. The newly-developed method provides protection from spin decay, meaning that the contained information can be maintained and transmitted over comparatively large distances, as has been demonstrated by a team from the University of Basel’s Department of Physics and the Swiss Nanoscience Institute. The results have been published in Physical Review X.

For several years, researchers have been trying to use the spin of an electron to store and transmit information. The spin of each electron is always coupled...

Im Focus: The proton precisely weighted

What is the mass of a proton? Scientists from Germany and Japan successfully did an important step towards the most exact knowledge of this fundamental constant. By means of precision measurements on a single proton, they could improve the precision by a factor of three and also correct the existing value.

To determine the mass of a single proton still more accurate – a group of physicists led by Klaus Blaum and Sven Sturm of the Max Planck Institute for Nuclear...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Closing the Sustainability Circle: Protection of Food with Biobased Materials

21.07.2017 | Event News

»We are bringing Additive Manufacturing to SMEs«

19.07.2017 | Event News

The technology with a feel for feelings

12.07.2017 | Event News

 
Latest News

NASA mission surfs through waves in space to understand space weather

25.07.2017 | Physics and Astronomy

Strength of tectonic plates may explain shape of the Tibetan Plateau, study finds

25.07.2017 | Earth Sciences

The dense vessel network regulates formation of thrombocytes in the bone marrow

25.07.2017 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>