Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Future 'comb on a chip': NIST's compact frequency comb could go places

27.10.2011
Laser frequency combs—extraordinarily precise tools for measuring frequencies (or colors) of light—have helped propel advances in timekeeping, trace gas detection and related physics research to new heights in the past decade.

While typical lasers operate at only a single or handful of frequencies, laser frequency combs operate simultaneously at many frequencies, approaching a million for some combs. These combs have very fine, evenly spaced "teeth," each a specific frequency, which can be used like hash marks on a ruler to measure the light emitted by lasers, atoms, stars or other objects. But frequency combs are usually bulky, delicate lab instruments—about the size of a typical suitcase—and challenging to operate, which limits their use.

Now, researchers at the National Institute of Standards and Technology (NIST) have developed a compact laser frequency comb,* a step toward user-friendly and ultimately chip-based combs that could enable new applications in astronomical searches for Earth-like planets, high-capacity telecommunications, and—if other components are miniaturized as well—portable versions of the most advanced atomic clocks. Large frequency combs are best known as the "gears" in today's room-sized versions of these clocks.

NIST's prototype micro-comb consists of a low-power semiconductor laser about the size of a shoebox and a high-quality optical cavity just 2 millimeters wide. A miniature laser like those in DVD players might be substituted in the future to squeeze the whole comb apparatus onto a microchip.

Compact frequency combs have been developed recently by a number of other research groups, but NIST's is the first to use a cavity made of fused silica, or quartz, the most common optical material. This means it could be integrated easily with other optical and photonic components, lead author Scott Papp says.

A full-size frequency comb uses a high-power, ultrafast laser.** By contrast, the new compact version relies on a low-power laser and the cavity's unusual properties. The cavity is designed to limit light dispersion and confine the light in a small space to enhance intensity and optical interactions. The infrared laser light travels in a loop inside the cavity, generating a train of very short pulses and a spectrum of additional shades of infrared light. The small cavity, with no moving parts, offers insight into basic processes of frequency combs, which are difficult to observe in large versions.

Among its desirable features, NIST's compact comb has wide spacing between the teeth—10 to 100 times wider than that found in typical larger combs. This spacing allows scientists to more easily measure and manipulate the teeth. Of particular interest to project leader Scott Diddams, the widely spaced teeth can be individually read by astronomical instruments. Portable frequency combs can thus be used as ultrastable frequency references in the search for Earth-like planets orbiting distant stars.*** Portable frequency combs can also have many other important applications. For example, because a frequency comb can simultaneously generate hundreds of telecommunication channels from a single low-power source, a micro-comb might eventually replace individual lasers now used for each channel in fiber-optic telecommunications.

"We hope this is just the beginning and look forward to bigger and better developments," Diddams says. "In the short term we want to learn if this new type of comb can one day replace ultrafast laser-based combs used with NIST's best atomic clocks. And if not, its small size will likely lead to other opportunities."

The research was supported in part by the Defense Advanced Research Projects Agency.

* S.B. Papp and S.A. Diddams. Spectral and temporal characterization of a fused-quartz microresonator optical frequency comb. Physical Review A. Forthcoming.
** See background on optical frequency combs at http://www.nist.gov/public_affairs/releases/frequency_combs.cfm.

*** See 2009 Tech Beat article, "NIST, CU to Build Instrument to Help Search for Earth-like Planets," at http://www.nist.gov/public_affairs/techbeat/tb2009_1103.htm#cu

Laura Ost | EurekAlert!
Further information:
http://www.nist.gov

More articles from Physics and Astronomy:

nachricht One-way roads for spin currents
23.05.2018 | Singapore University of Technology and Design

nachricht Tunable diamond string may hold key to quantum memory
23.05.2018 | Harvard John A. Paulson School of Engineering and Applied Sciences

All articles from Physics and Astronomy >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: LZH showcases laser material processing of tomorrow at the LASYS 2018

At the LASYS 2018, from June 5th to 7th, the Laser Zentrum Hannover e.V. (LZH) will be showcasing processes for the laser material processing of tomorrow in hall 4 at stand 4E75. With blown bomb shells the LZH will present first results of a research project on civil security.

At this year's LASYS, the LZH will exhibit light-based processes such as cutting, welding, ablation and structuring as well as additive manufacturing for...

Im Focus: Self-illuminating pixels for a new display generation

There are videos on the internet that can make one marvel at technology. For example, a smartphone is casually bent around the arm or a thin-film display is rolled in all directions and with almost every diameter. From the user's point of view, this looks fantastic. From a professional point of view, however, the question arises: Is that already possible?

At Display Week 2018, scientists from the Fraunhofer Institute for Applied Polymer Research IAP will be demonstrating today’s technological possibilities and...

Im Focus: Explanation for puzzling quantum oscillations has been found

So-called quantum many-body scars allow quantum systems to stay out of equilibrium much longer, explaining experiment | Study published in Nature Physics

Recently, researchers from Harvard and MIT succeeded in trapping a record 53 atoms and individually controlling their quantum state, realizing what is called a...

Im Focus: Dozens of binaries from Milky Way's globular clusters could be detectable by LISA

Next-generation gravitational wave detector in space will complement LIGO on Earth

The historic first detection of gravitational waves from colliding black holes far outside our galaxy opened a new window to understanding the universe. A...

Im Focus: Entangled atoms shine in unison

A team led by Austrian experimental physicist Rainer Blatt has succeeded in characterizing the quantum entanglement of two spatially separated atoms by observing their light emission. This fundamental demonstration could lead to the development of highly sensitive optical gradiometers for the precise measurement of the gravitational field or the earth's magnetic field.

The age of quantum technology has long been heralded. Decades of research into the quantum world have led to the development of methods that make it possible...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

Save the date: Forum European Neuroscience – 07-11 July 2018 in Berlin, Germany

02.05.2018 | Event News

Invitation to the upcoming "Current Topics in Bioinformatics: Big Data in Genomics and Medicine"

13.04.2018 | Event News

Unique scope of UV LED technologies and applications presented in Berlin: ICULTA-2018

12.04.2018 | Event News

 
Latest News

Research reveals how order first appears in liquid crystals

23.05.2018 | Life Sciences

Space-like gravity weakens biochemical signals in muscle formation

23.05.2018 | Life Sciences

NIST puts the optical microscope under the microscope to achieve atomic accuracy

23.05.2018 | Physics and Astronomy

VideoLinks
Science & Research
Overview of more VideoLinks >>>