Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Fundamentals of physics confirmed

08.10.2014

Experiments testing Einstein's time dilation and quantum electrodynamics

To explore any possible limits of the two theories, they have been experimentally verified many times already and both have passed all the tests so far. Hence, scientists look for deviations in experiments with increasing precision or under extreme conditions.

For this purpose, Nörtershäuser's team has now accelerated ions to velocities near the speed of light and illuminated them with a laser.

The results, which are presented in two new publications, confirm the time dilation predicted for high velocities in the theory of relativity with an accuracy that has never before been achieved. Furthermore, the team provided the first direct proof of a spectral line in highly charged bismuth ions, for which the GSI and other research institutions had been looking for in vain for almost 14 years.

Einstein confirmed again

In an experiment using the ESR heavy ion storage ring at GSI, the time dilation was measured at a velocity of about 34% of the speed of light. Einstein's prediction that the frequency of a clock depends on its speed is one of the strangest consequences of the theory of relativity. Since macroscopic clocks cannot be brought to sufficiently high velocities, the scientists used atomic clocks in the form of singly charged lithium ions.

Einstein himself proposed the basic principle of the experiment. It was carried out for the first time in 1938 by Ives and Stilwell using hydrogen atoms; it was thus possible to prove time dilation with an accuracy of 1%. In modern experiments, these clocks are "read" using two laser beams. One of the beams is traveling in the same direction as the ions and is illuminating the ion from the "back", whereas the other one is counter propagating, illuminating the ion from the "front".

Photodetectors are used to observe the florescence of the ions. Fluorescent light can be continuously emitted only when both lasers simultaneously excite the ions with the resonant frequency. When the signal is at a maximum, the frequencies of both lasers are measured. "According to the theory of relativity, the product of these frequencies divided by the product of the known resonance frequencies of the ions at rest must be precisely 1. Any deviation from this would mean that the formula for time dilation is incorrect" explains Nörtershäuser.

The result confirms Einstein's prediction to be accurate at a 2 ppb (parts per billion) level, which is about four times more accurate as in the previous experiment, which was carried out at the Heidelberg Test Storage Ring (TSR) at 6.4% of the speed of light.

The publication:

Test of Time Dilation Using Stored Li+ Ions as Clocks at Relativistic Speed. Phys. Rev. Lett. 113, 120405, 2014. DOI: http://dx.doi.org/10.1103/PhysRevLett.113.120405

A 14-year-old mystery has been solved

In a second experiment, the research group achieved a further breakthrough in a precision experiment. Here, quantum electrodynamics (QED) was tested in the strongest magnetic fields available in the laboratory. These fields exist on the surface of heavy atomic nuclei. They are about 100 million times higher than the strongest static magnetic fields that can be produced today using superconducting magnets. These fields become accessible in experiments with heavy, highly charged ions. The experiment used bismuth ions, which have only one electron or three of them left. While the resonance in bismuth ions with only one electron was already measured at GSI in 1994, it was impossible to observe the lithium-like bismuth until recently. But a meaningful test of QED results only from the combination of the two transitions.

These ions were accelerated in the ESR up to about 71% of speed of light and illuminated with laser light. Again, the fluorescence of the ions was detected to observe the resonance. "When we started with the preparations for the experiment, it quickly became apparent that detecting the fluorescence photons was one of the most critical points" explains Dr. Matthias Lochmann from the University of Mainz. "It is impossible to place detectors around the entire ring. Instead, we positioned a particularly efficient detection system at one point within the ring" says Dr. Raphael Jöhren, a member of Prof. Weinheimer's research team at the University of Münster, describing his contribution to the experiment. Using this detector, a new laser system and sophisticated data acquisition, it was possible for the first time to observe the long-sought transition. Therefore, they were able to eliminate the doubts about the theoretical prediction that had arisen in the meantime.

###

The publication

Observation of the hyperfine transition in lithium-like bismuth 209Bi80+: Towards a test of QED in strong magnetic fields. Phys. Rev. A 90, 030501(R), 2014. DOI: http://dx.doi.org/10.1103/PhysRevA.90.030501

Additional information

You can find a detailed description of both publications at http://www.tu-darmstadt.de/grundfeste_physik.

Wilfried Nörtershäuser | Eurek Alert!

Further reports about: GSI bismuth experiments explains fluorescence frequencies ions lasers magnetic fields physics speed of light velocities

More articles from Physics and Astronomy:

nachricht Astronomers release most complete ultraviolet-light survey of nearby galaxies
18.05.2018 | NASA/Goddard Space Flight Center

nachricht A quantum entanglement between two physically separated ultra-cold atomic clouds
17.05.2018 | University of the Basque Country

All articles from Physics and Astronomy >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Explanation for puzzling quantum oscillations has been found

So-called quantum many-body scars allow quantum systems to stay out of equilibrium much longer, explaining experiment | Study published in Nature Physics

Recently, researchers from Harvard and MIT succeeded in trapping a record 53 atoms and individually controlling their quantum state, realizing what is called a...

Im Focus: Dozens of binaries from Milky Way's globular clusters could be detectable by LISA

Next-generation gravitational wave detector in space will complement LIGO on Earth

The historic first detection of gravitational waves from colliding black holes far outside our galaxy opened a new window to understanding the universe. A...

Im Focus: Entangled atoms shine in unison

A team led by Austrian experimental physicist Rainer Blatt has succeeded in characterizing the quantum entanglement of two spatially separated atoms by observing their light emission. This fundamental demonstration could lead to the development of highly sensitive optical gradiometers for the precise measurement of the gravitational field or the earth's magnetic field.

The age of quantum technology has long been heralded. Decades of research into the quantum world have led to the development of methods that make it possible...

Im Focus: Computer-Designed Customized Regenerative Heart Valves

Cardiovascular tissue engineering aims to treat heart disease with prostheses that grow and regenerate. Now, researchers from the University of Zurich, the Technical University Eindhoven and the Charité Berlin have successfully implanted regenerative heart valves, designed with the aid of computer simulations, into sheep for the first time.

Producing living tissue or organs based on human cells is one of the main research fields in regenerative medicine. Tissue engineering, which involves growing...

Im Focus: Light-induced superconductivity under high pressure

A team of scientists of the Max Planck Institute for the Structure and Dynamics of Matter (MPSD) at the Center for Free-Electron Laser Science in Hamburg investigated optically-induced superconductivity in the alkali-doped fulleride K3C60under high external pressures. This study allowed, on one hand, to uniquely assess the nature of the transient state as a superconducting phase. In addition, it unveiled the possibility to induce superconductivity in K3C60 at temperatures far above the -170 degrees Celsius hypothesized previously, and rather all the way to room temperature. The paper by Cantaluppi et al has been published in Nature Physics.

Unlike ordinary metals, superconductors have the unique capability of transporting electrical currents without any loss. Nowadays, their technological...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

Save the date: Forum European Neuroscience – 07-11 July 2018 in Berlin, Germany

02.05.2018 | Event News

Invitation to the upcoming "Current Topics in Bioinformatics: Big Data in Genomics and Medicine"

13.04.2018 | Event News

Unique scope of UV LED technologies and applications presented in Berlin: ICULTA-2018

12.04.2018 | Event News

 
Latest News

Supersonic waves may help electronics beat the heat

18.05.2018 | Power and Electrical Engineering

Keeping a Close Eye on Ice Loss

18.05.2018 | Information Technology

CrowdWater: An App for Flood Research

18.05.2018 | Information Technology

VideoLinks
Science & Research
Overview of more VideoLinks >>>