Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Fundamentals of physics confirmed

08.10.2014

Experiments testing Einstein's time dilation and quantum electrodynamics

To explore any possible limits of the two theories, they have been experimentally verified many times already and both have passed all the tests so far. Hence, scientists look for deviations in experiments with increasing precision or under extreme conditions.

For this purpose, Nörtershäuser's team has now accelerated ions to velocities near the speed of light and illuminated them with a laser.

The results, which are presented in two new publications, confirm the time dilation predicted for high velocities in the theory of relativity with an accuracy that has never before been achieved. Furthermore, the team provided the first direct proof of a spectral line in highly charged bismuth ions, for which the GSI and other research institutions had been looking for in vain for almost 14 years.

Einstein confirmed again

In an experiment using the ESR heavy ion storage ring at GSI, the time dilation was measured at a velocity of about 34% of the speed of light. Einstein's prediction that the frequency of a clock depends on its speed is one of the strangest consequences of the theory of relativity. Since macroscopic clocks cannot be brought to sufficiently high velocities, the scientists used atomic clocks in the form of singly charged lithium ions.

Einstein himself proposed the basic principle of the experiment. It was carried out for the first time in 1938 by Ives and Stilwell using hydrogen atoms; it was thus possible to prove time dilation with an accuracy of 1%. In modern experiments, these clocks are "read" using two laser beams. One of the beams is traveling in the same direction as the ions and is illuminating the ion from the "back", whereas the other one is counter propagating, illuminating the ion from the "front".

Photodetectors are used to observe the florescence of the ions. Fluorescent light can be continuously emitted only when both lasers simultaneously excite the ions with the resonant frequency. When the signal is at a maximum, the frequencies of both lasers are measured. "According to the theory of relativity, the product of these frequencies divided by the product of the known resonance frequencies of the ions at rest must be precisely 1. Any deviation from this would mean that the formula for time dilation is incorrect" explains Nörtershäuser.

The result confirms Einstein's prediction to be accurate at a 2 ppb (parts per billion) level, which is about four times more accurate as in the previous experiment, which was carried out at the Heidelberg Test Storage Ring (TSR) at 6.4% of the speed of light.

The publication:

Test of Time Dilation Using Stored Li+ Ions as Clocks at Relativistic Speed. Phys. Rev. Lett. 113, 120405, 2014. DOI: http://dx.doi.org/10.1103/PhysRevLett.113.120405

A 14-year-old mystery has been solved

In a second experiment, the research group achieved a further breakthrough in a precision experiment. Here, quantum electrodynamics (QED) was tested in the strongest magnetic fields available in the laboratory. These fields exist on the surface of heavy atomic nuclei. They are about 100 million times higher than the strongest static magnetic fields that can be produced today using superconducting magnets. These fields become accessible in experiments with heavy, highly charged ions. The experiment used bismuth ions, which have only one electron or three of them left. While the resonance in bismuth ions with only one electron was already measured at GSI in 1994, it was impossible to observe the lithium-like bismuth until recently. But a meaningful test of QED results only from the combination of the two transitions.

These ions were accelerated in the ESR up to about 71% of speed of light and illuminated with laser light. Again, the fluorescence of the ions was detected to observe the resonance. "When we started with the preparations for the experiment, it quickly became apparent that detecting the fluorescence photons was one of the most critical points" explains Dr. Matthias Lochmann from the University of Mainz. "It is impossible to place detectors around the entire ring. Instead, we positioned a particularly efficient detection system at one point within the ring" says Dr. Raphael Jöhren, a member of Prof. Weinheimer's research team at the University of Münster, describing his contribution to the experiment. Using this detector, a new laser system and sophisticated data acquisition, it was possible for the first time to observe the long-sought transition. Therefore, they were able to eliminate the doubts about the theoretical prediction that had arisen in the meantime.

###

The publication

Observation of the hyperfine transition in lithium-like bismuth 209Bi80+: Towards a test of QED in strong magnetic fields. Phys. Rev. A 90, 030501(R), 2014. DOI: http://dx.doi.org/10.1103/PhysRevA.90.030501

Additional information

You can find a detailed description of both publications at http://www.tu-darmstadt.de/grundfeste_physik.

Wilfried Nörtershäuser | Eurek Alert!

Further reports about: GSI bismuth experiments explains fluorescence frequencies ions lasers magnetic fields physics speed of light velocities

More articles from Physics and Astronomy:

nachricht Significantly more productivity in USP lasers
06.12.2016 | Fraunhofer-Institut für Lasertechnik ILT

nachricht Shape matters when light meets atom
05.12.2016 | Centre for Quantum Technologies at the National University of Singapore

All articles from Physics and Astronomy >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Significantly more productivity in USP lasers

In recent years, lasers with ultrashort pulses (USP) down to the femtosecond range have become established on an industrial scale. They could advance some applications with the much-lauded “cold ablation” – if that meant they would then achieve more throughput. A new generation of process engineering that will address this issue in particular will be discussed at the “4th UKP Workshop – Ultrafast Laser Technology” in April 2017.

Even back in the 1990s, scientists were comparing materials processing with nanosecond, picosecond and femtosesecond pulses. The result was surprising:...

Im Focus: Shape matters when light meets atom

Mapping the interaction of a single atom with a single photon may inform design of quantum devices

Have you ever wondered how you see the world? Vision is about photons of light, which are packets of energy, interacting with the atoms or molecules in what...

Im Focus: Novel silicon etching technique crafts 3-D gradient refractive index micro-optics

A multi-institutional research collaboration has created a novel approach for fabricating three-dimensional micro-optics through the shape-defined formation of porous silicon (PSi), with broad impacts in integrated optoelectronics, imaging, and photovoltaics.

Working with colleagues at Stanford and The Dow Chemical Company, researchers at the University of Illinois at Urbana-Champaign fabricated 3-D birefringent...

Im Focus: Quantum Particles Form Droplets

In experiments with magnetic atoms conducted at extremely low temperatures, scientists have demonstrated a unique phase of matter: The atoms form a new type of quantum liquid or quantum droplet state. These so called quantum droplets may preserve their form in absence of external confinement because of quantum effects. The joint team of experimental physicists from Innsbruck and theoretical physicists from Hannover report on their findings in the journal Physical Review X.

“Our Quantum droplets are in the gas phase but they still drop like a rock,” explains experimental physicist Francesca Ferlaino when talking about the...

Im Focus: MADMAX: Max Planck Institute for Physics takes up axion research

The Max Planck Institute for Physics (MPP) is opening up a new research field. A workshop from November 21 - 22, 2016 will mark the start of activities for an innovative axion experiment. Axions are still only purely hypothetical particles. Their detection could solve two fundamental problems in particle physics: What dark matter consists of and why it has not yet been possible to directly observe a CP violation for the strong interaction.

The “MADMAX” project is the MPP’s commitment to axion research. Axions are so far only a theoretical prediction and are difficult to detect: on the one hand,...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

ICTM Conference 2017: Production technology for turbomachine manufacturing of the future

16.11.2016 | Event News

Innovation Day Laser Technology – Laser Additive Manufacturing

01.11.2016 | Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

 
Latest News

NTU scientists build new ultrasound device using 3-D printing technology

07.12.2016 | Health and Medicine

The balancing act: An enzyme that links endocytosis to membrane recycling

07.12.2016 | Life Sciences

How to turn white fat brown

07.12.2016 | Health and Medicine

VideoLinks
B2B-VideoLinks
More VideoLinks >>>