Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Fundamental matter-antimatter symmetry confirmed

28.07.2011
International collaboration including MPQ scientists sets a new value for the antiproton mass relative to the electron with unprecedented precision.

According to modern cosmology, matter and antimatter were created in equal amounts in the Big Bang at the beginning of the universe. Physicists are developing concepts to explain why the visible universe now seems to be made entirely out of matter. On the other hand, experimental groups are producing antimatter atoms artificially to explore the fundamental symmetries between matter and antimatter, which according to the present theories of particle physics should have exactly the same properties, except for the opposite electrical charge). Now the independent research group “Antimatter Spectroscopy” of Dr. Masaki Hori, which is associated with the Laser Spectroscopy Division of Prof. Theodor W. Hänsch at the Max Planck Institute of Quantum Optics, has measured the mass of the antiproton relative to the electron with a precision of 1.3 parts per billion (Nature, 28 July 2011). For this they used a new method of laser spectroscopy on a half-antimatter, half-matter atom called antiprotonic helium.


An antiproton (black sphere) trapped inside a helium atom is probed by two laser beams. Foto: MPQ

The result agreed with the proton mass measured to a similar level of precision, confirming the symmetry between matter and antimatter. The experiment was carried out at the European Laboratory for Particle Physics (CERN) in Geneva (Switzerland) in a project led by scientists from the Max Planck Institute of Quantum Optics and Tokyo University (Japan), and including the University of Brescia (Italy), the Stefan Meyer Institute (Vienna, Austria), and the KFKI Research Institute (Budapest, Hungary).

Physicists believe that the laws of nature obey a fundamental symmetry called “CPT” (this stands for charge conjugation, parity, and time reversal), which postulates that if all the matter in the universe were replaced with antimatter, left and right inverted as if looking into a mirror, and the flow of time reversed, this “anti-world” would be indistinguishable from our real matter world. Antimatter atoms should weigh exactly the same as their matter counterparts. If scientists were to experimentally detect any deviation, however small, it would indicate that this fundamental symmetry is broken. “Small” is the keyword here – it is essential to use the most precise methods and instruments available to make this comparison with the highest possible precision.

Antimatter is extraordinarily difficult to handle in the laboratory, because upon coming into contact with ordinary matter (even the air molecules in a room), it immediately annihilates, converting into energy and new particles. In 1997, researchers from the Max Planck Institute of Quantum Optics in cooperation with other European, Japanese, and American groups began construction of a facility called the Antiproton Decelerator (AD) at CERN. Here antiprotons produced in high-energy collisions are collected and stored in a vacuum pipe arranged in a 190-m-long racetrack shape. The antiprotons are gradually slowed down, before being transported to several experiments. The so-called ASACUSA[1] (Atomic Spectroscopy and Collisions using Slow Antiprotons, named after a district in Tokyo) collaboration, of which Dr. Hori is one of the project leaders, sends the antiprotons into a helium target to create and study antiprotonic helium atoms.

Normal helium atoms consist of a nucleus with two electrons orbiting around it. In antiprotonic helium, one of these electrons is replaced by an antiproton, which finds itself in an excited orbit some 100 picometres (10-10 m) from the nucleus. Scientists fire a laser beam onto the atom, and carefully tune its frequency until the antiproton makes a quantum jump from one orbit to another. By comparing this frequency with theoretical calculations, the mass of the antiproton can be determined relative to the electron.

An important source of imprecision arises because the antiprotonic atoms jiggle around randomly according to their thermal energy, so that atoms moving towards the laser beam experience a different frequency compared to those moving away. This is similar to the effect that causes the siren of an approaching ambulance to change pitch as it passes you by. In their previous experiments of 2006, the MPQ / ASACUSA scientists used one laser beam, and this effect limited the precision of their measurement.

This time to go beyond this limit, a technique called “two-photon laser spectroscopy” was used. The atoms were struck by two laser beams travelling in opposite directions, with the result that the effect was partially cancelled, leading to a four to six times higher precision. The first laser caused the antiproton to make a quantum jump to a virtual energy level normally not allowed by quantum mechanics, so that the second laser could actually bring the antiproton up to the closest allowed state. Such a two-photon jump is normally difficult to achieve because the antiproton is heavy, but MPQ scientists accomplished it by building two ultra-sharp lasers and carefully choosing a special combination of laser frequencies. To do this, an optical frequency comb – a special device invented 10 years ago by the group of Prof. Theodor W. Hänsch to measure the frequency of light – was used.

The new measurements showed that the antiproton is 1836.1526736(23) times heavier than the electron, the parenthesis showing the 1-standard deviation imprecision. “We have measured the mass of the antiproton relative to the electron with a precision of 10 digits, and have found it exactly the same as the proton value known with a similar precision”, Masaki Hori explains. “This can be regarded as a confirmation of the CPT theorem. Furthermore, we learned that antiprotons obey the same laws of nonlinear quantum optics like normal particles, and we can use lasers to manipulate them. The two-photon technique would allow much higher precisions to be achieved in the future, so that ultimately the antiproton mass may be better known than the proton one.”

The Committee on Data for Science and Technology (CODATA) uses the results of this experiment as one of several input data to determine the proton-to-electron mass ratio, which in turn influences the values of many other fundamental constants. Olivia Meyer-Streng

[1]ASACUSA is one of several experiments studying antimatter at CERN. ATRAP and ALPHA investigate antihydrogen atoms, AeGIS studies how antihydrogen falls under gravity, and ACE studies the possible use of antiprotons for cancer therapy.

Original Publication:
Masaki Hori, Anna Sótér, Daniel Barna, Andreas Dax, Ryugo Hayano, Susanne Friedreich, Bertalan Juhász, Thomas Pask, Eberhard Widmann, Dezső Horváth, Luca Venturelli, Nicola Zurlo
Two-photon laser spectroscopy of antiprotonic helium and the antiproton‐to‐electron mass ratio

Nature, 28 July 2011

Contact:
Dr. Masaki Hori
Max Planck Institute of Quantum Optics
Hans-Kopfermann-Straße 1
85748 Garching
Phone: +49(0)89 32905 268
e-mail: masaki.hori@mpq.mpg.de
Dr. Olivia Meyer-Streng
Press and Public Relations
Max Planck Institute of Quantum Optics
Hans-Kopfermann-Straße 1
85748 Garching
Phone: +49(0)89 32905 213
e-mail: olivia.meyer-streng@mpq.mpg.de

Dr. Olivia Meyer-Streng | Max-Planck-Institut
Further information:
http://www.mpq.mpg.de

More articles from Physics and Astronomy:

nachricht Astronomers find unexpected, dust-obscured star formation in distant galaxy
24.03.2017 | University of Massachusetts at Amherst

nachricht Gravitational wave kicks monster black hole out of galactic core
24.03.2017 | NASA/Goddard Space Flight Center

All articles from Physics and Astronomy >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Giant Magnetic Fields in the Universe

Astronomers from Bonn and Tautenburg in Thuringia (Germany) used the 100-m radio telescope at Effelsberg to observe several galaxy clusters. At the edges of these large accumulations of dark matter, stellar systems (galaxies), hot gas, and charged particles, they found magnetic fields that are exceptionally ordered over distances of many million light years. This makes them the most extended magnetic fields in the universe known so far.

The results will be published on March 22 in the journal „Astronomy & Astrophysics“.

Galaxy clusters are the largest gravitationally bound structures in the universe. With a typical extent of about 10 million light years, i.e. 100 times the...

Im Focus: Tracing down linear ubiquitination

Researchers at the Goethe University Frankfurt, together with partners from the University of Tübingen in Germany and Queen Mary University as well as Francis Crick Institute from London (UK) have developed a novel technology to decipher the secret ubiquitin code.

Ubiquitin is a small protein that can be linked to other cellular proteins, thereby controlling and modulating their functions. The attachment occurs in many...

Im Focus: Perovskite edges can be tuned for optoelectronic performance

Layered 2D material improves efficiency for solar cells and LEDs

In the eternal search for next generation high-efficiency solar cells and LEDs, scientists at Los Alamos National Laboratory and their partners are creating...

Im Focus: Polymer-coated silicon nanosheets as alternative to graphene: A perfect team for nanoelectronics

Silicon nanosheets are thin, two-dimensional layers with exceptional optoelectronic properties very similar to those of graphene. Albeit, the nanosheets are less stable. Now researchers at the Technical University of Munich (TUM) have, for the first time ever, produced a composite material combining silicon nanosheets and a polymer that is both UV-resistant and easy to process. This brings the scientists a significant step closer to industrial applications like flexible displays and photosensors.

Silicon nanosheets are thin, two-dimensional layers with exceptional optoelectronic properties very similar to those of graphene. Albeit, the nanosheets are...

Im Focus: Researchers Imitate Molecular Crowding in Cells

Enzymes behave differently in a test tube compared with the molecular scrum of a living cell. Chemists from the University of Basel have now been able to simulate these confined natural conditions in artificial vesicles for the first time. As reported in the academic journal Small, the results are offering better insight into the development of nanoreactors and artificial organelles.

Enzymes behave differently in a test tube compared with the molecular scrum of a living cell. Chemists from the University of Basel have now been able to...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

International Land Use Symposium ILUS 2017: Call for Abstracts and Registration open

20.03.2017 | Event News

CONNECT 2017: International congress on connective tissue

14.03.2017 | Event News

ICTM Conference: Turbine Construction between Big Data and Additive Manufacturing

07.03.2017 | Event News

 
Latest News

Argon is not the 'dope' for metallic hydrogen

24.03.2017 | Materials Sciences

Astronomers find unexpected, dust-obscured star formation in distant galaxy

24.03.2017 | Physics and Astronomy

Gravitational wave kicks monster black hole out of galactic core

24.03.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>