Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:


Fundamental matter-antimatter symmetry confirmed

International collaboration including MPQ scientists sets a new value for the antiproton mass relative to the electron with unprecedented precision.

According to modern cosmology, matter and antimatter were created in equal amounts in the Big Bang at the beginning of the universe. Physicists are developing concepts to explain why the visible universe now seems to be made entirely out of matter. On the other hand, experimental groups are producing antimatter atoms artificially to explore the fundamental symmetries between matter and antimatter, which according to the present theories of particle physics should have exactly the same properties, except for the opposite electrical charge). Now the independent research group “Antimatter Spectroscopy” of Dr. Masaki Hori, which is associated with the Laser Spectroscopy Division of Prof. Theodor W. Hänsch at the Max Planck Institute of Quantum Optics, has measured the mass of the antiproton relative to the electron with a precision of 1.3 parts per billion (Nature, 28 July 2011). For this they used a new method of laser spectroscopy on a half-antimatter, half-matter atom called antiprotonic helium.

An antiproton (black sphere) trapped inside a helium atom is probed by two laser beams. Foto: MPQ

The result agreed with the proton mass measured to a similar level of precision, confirming the symmetry between matter and antimatter. The experiment was carried out at the European Laboratory for Particle Physics (CERN) in Geneva (Switzerland) in a project led by scientists from the Max Planck Institute of Quantum Optics and Tokyo University (Japan), and including the University of Brescia (Italy), the Stefan Meyer Institute (Vienna, Austria), and the KFKI Research Institute (Budapest, Hungary).

Physicists believe that the laws of nature obey a fundamental symmetry called “CPT” (this stands for charge conjugation, parity, and time reversal), which postulates that if all the matter in the universe were replaced with antimatter, left and right inverted as if looking into a mirror, and the flow of time reversed, this “anti-world” would be indistinguishable from our real matter world. Antimatter atoms should weigh exactly the same as their matter counterparts. If scientists were to experimentally detect any deviation, however small, it would indicate that this fundamental symmetry is broken. “Small” is the keyword here – it is essential to use the most precise methods and instruments available to make this comparison with the highest possible precision.

Antimatter is extraordinarily difficult to handle in the laboratory, because upon coming into contact with ordinary matter (even the air molecules in a room), it immediately annihilates, converting into energy and new particles. In 1997, researchers from the Max Planck Institute of Quantum Optics in cooperation with other European, Japanese, and American groups began construction of a facility called the Antiproton Decelerator (AD) at CERN. Here antiprotons produced in high-energy collisions are collected and stored in a vacuum pipe arranged in a 190-m-long racetrack shape. The antiprotons are gradually slowed down, before being transported to several experiments. The so-called ASACUSA[1] (Atomic Spectroscopy and Collisions using Slow Antiprotons, named after a district in Tokyo) collaboration, of which Dr. Hori is one of the project leaders, sends the antiprotons into a helium target to create and study antiprotonic helium atoms.

Normal helium atoms consist of a nucleus with two electrons orbiting around it. In antiprotonic helium, one of these electrons is replaced by an antiproton, which finds itself in an excited orbit some 100 picometres (10-10 m) from the nucleus. Scientists fire a laser beam onto the atom, and carefully tune its frequency until the antiproton makes a quantum jump from one orbit to another. By comparing this frequency with theoretical calculations, the mass of the antiproton can be determined relative to the electron.

An important source of imprecision arises because the antiprotonic atoms jiggle around randomly according to their thermal energy, so that atoms moving towards the laser beam experience a different frequency compared to those moving away. This is similar to the effect that causes the siren of an approaching ambulance to change pitch as it passes you by. In their previous experiments of 2006, the MPQ / ASACUSA scientists used one laser beam, and this effect limited the precision of their measurement.

This time to go beyond this limit, a technique called “two-photon laser spectroscopy” was used. The atoms were struck by two laser beams travelling in opposite directions, with the result that the effect was partially cancelled, leading to a four to six times higher precision. The first laser caused the antiproton to make a quantum jump to a virtual energy level normally not allowed by quantum mechanics, so that the second laser could actually bring the antiproton up to the closest allowed state. Such a two-photon jump is normally difficult to achieve because the antiproton is heavy, but MPQ scientists accomplished it by building two ultra-sharp lasers and carefully choosing a special combination of laser frequencies. To do this, an optical frequency comb – a special device invented 10 years ago by the group of Prof. Theodor W. Hänsch to measure the frequency of light – was used.

The new measurements showed that the antiproton is 1836.1526736(23) times heavier than the electron, the parenthesis showing the 1-standard deviation imprecision. “We have measured the mass of the antiproton relative to the electron with a precision of 10 digits, and have found it exactly the same as the proton value known with a similar precision”, Masaki Hori explains. “This can be regarded as a confirmation of the CPT theorem. Furthermore, we learned that antiprotons obey the same laws of nonlinear quantum optics like normal particles, and we can use lasers to manipulate them. The two-photon technique would allow much higher precisions to be achieved in the future, so that ultimately the antiproton mass may be better known than the proton one.”

The Committee on Data for Science and Technology (CODATA) uses the results of this experiment as one of several input data to determine the proton-to-electron mass ratio, which in turn influences the values of many other fundamental constants. Olivia Meyer-Streng

[1]ASACUSA is one of several experiments studying antimatter at CERN. ATRAP and ALPHA investigate antihydrogen atoms, AeGIS studies how antihydrogen falls under gravity, and ACE studies the possible use of antiprotons for cancer therapy.

Original Publication:
Masaki Hori, Anna Sótér, Daniel Barna, Andreas Dax, Ryugo Hayano, Susanne Friedreich, Bertalan Juhász, Thomas Pask, Eberhard Widmann, Dezső Horváth, Luca Venturelli, Nicola Zurlo
Two-photon laser spectroscopy of antiprotonic helium and the antiproton‐to‐electron mass ratio

Nature, 28 July 2011

Dr. Masaki Hori
Max Planck Institute of Quantum Optics
Hans-Kopfermann-Straße 1
85748 Garching
Phone: +49(0)89 32905 268
Dr. Olivia Meyer-Streng
Press and Public Relations
Max Planck Institute of Quantum Optics
Hans-Kopfermann-Straße 1
85748 Garching
Phone: +49(0)89 32905 213

Dr. Olivia Meyer-Streng | Max-Planck-Institut
Further information:

More articles from Physics and Astronomy:

nachricht A better way to weigh millions of solitary stars
15.12.2017 | Vanderbilt University

nachricht A chip for environmental and health monitoring
15.12.2017 | Friedrich-Alexander-Universität Erlangen-Nürnberg

All articles from Physics and Astronomy >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: First-of-its-kind chemical oscillator offers new level of molecular control

DNA molecules that follow specific instructions could offer more precise molecular control of synthetic chemical systems, a discovery that opens the door for engineers to create molecular machines with new and complex behaviors.

Researchers have created chemical amplifiers and a chemical oscillator using a systematic method that has the potential to embed sophisticated circuit...

Im Focus: Long-lived storage of a photonic qubit for worldwide teleportation

MPQ scientists achieve long storage times for photonic quantum bits which break the lower bound for direct teleportation in a global quantum network.

Concerning the development of quantum memories for the realization of global quantum networks, scientists of the Quantum Dynamics Division led by Professor...

Im Focus: Electromagnetic water cloak eliminates drag and wake

Detailed calculations show water cloaks are feasible with today's technology

Researchers have developed a water cloaking concept based on electromagnetic forces that could eliminate an object's wake, greatly reducing its drag while...

Im Focus: Scientists channel graphene to understand filtration and ion transport into cells

Tiny pores at a cell's entryway act as miniature bouncers, letting in some electrically charged atoms--ions--but blocking others. Operating as exquisitely sensitive filters, these "ion channels" play a critical role in biological functions such as muscle contraction and the firing of brain cells.

To rapidly transport the right ions through the cell membrane, the tiny channels rely on a complex interplay between the ions and surrounding molecules,...

Im Focus: Towards data storage at the single molecule level

The miniaturization of the current technology of storage media is hindered by fundamental limits of quantum mechanics. A new approach consists in using so-called spin-crossover molecules as the smallest possible storage unit. Similar to normal hard drives, these special molecules can save information via their magnetic state. A research team from Kiel University has now managed to successfully place a new class of spin-crossover molecules onto a surface and to improve the molecule’s storage capacity. The storage density of conventional hard drives could therefore theoretically be increased by more than one hundred fold. The study has been published in the scientific journal Nano Letters.

Over the past few years, the building blocks of storage media have gotten ever smaller. But further miniaturization of the current technology is hindered by...

All Focus news of the innovation-report >>>



Event News

See, understand and experience the work of the future

11.12.2017 | Event News

Innovative strategies to tackle parasitic worms

08.12.2017 | Event News

AKL’18: The opportunities and challenges of digitalization in the laser industry

07.12.2017 | Event News

Latest News

Engineers program tiny robots to move, think like insects

15.12.2017 | Power and Electrical Engineering

One in 5 materials chemistry papers may be wrong, study suggests

15.12.2017 | Materials Sciences

New antbird species discovered in Peru by LSU ornithologists

15.12.2017 | Life Sciences

More VideoLinks >>>