Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Functionalized graphene oxide plays part in next-generation oil-well drilling fluids

09.12.2011
Graphene's star is rising as a material that could become essential to efficient, environmentally sound oil production. Rice University researchers are taking advantage of graphene's outstanding strength, light weight and solubility to enhance fluids used to drill oil wells.

The Rice University lab of chemist James Tour and scientists at M-I SWACO, a Texas-based supplier of drilling fluids and subsidiary of oil-services provider Schlumberger, have produced functionalized graphene oxide to alleviate the clogging of oil-producing pores in newly drilled wells.

The patented technique took a step closer to commercialization with the publication of new research this month in the American Chemical Society journal Applied Materials and Interfaces. Graphene is a one-atom-thick sheet of carbon that won its discoverers a Nobel Prize last year.

Rice's relationship with M-I SWACO began more than two years ago when the company funded the lab's follow-up to research that produced the first graphene additives for drilling fluids known as muds. These fluids are pumped downhole as part of the process to keep drill bits clean and remove cuttings. With traditional clay-enhanced muds, differential pressure forms a layer on the wellbore called a filter cake, which both keeps the oil from flowing out and drilling fluids from invading the tiny, oil-producing pores.

When the drill bit is removed and drilling fluid displaced, the formation oil forces remnants of the filter cake out of the pores as the well begins to produce. But sometimes the clay won't budge, and the well's productivity is reduced.

The Tour Group discovered that microscopic, pliable flakes of graphene can form a thinner, lighter filter cake. When they encounter a pore, the flakes fold in upon themselves and look something like starfish sucked into a hole. But when well pressure is relieved, the flakes are pushed back out by the oil.

All that was known two years ago. Since then, Tour and a research team led by Dmitry Kosynkin, a former Rice postdoctoral associate and now a petroleum engineer at Saudi Aramco, have been fine-tuning the materials.

They found a few issues that needed to be dealt with. First, pristine graphene is hard to disperse in water, so it is unsuitable for water-based muds. Graphene oxide (GO) turned out to be much more soluble in fresh water, but tended to coagulate in saltwater, the basis for many muds.

The solution was to "esterify" GO flakes with alcohol. "It's a simple, one-step reaction," said Tour, Rice's T.T. and W.F. Chao Chair in Chemistry as well as a professor of mechanical engineering and materials science and of computer science. "Graphene oxide functionalized with alcohol works much better because it doesn't precipitate in the presence of salts. There's nothing exotic about it."

In a series of standard American Petroleum Institute tests, the team found the best mix of functionalized GO to be a combination of large flakes and powdered GO for reinforcement. A mud with 2 percent functionalized GO formed a filter cake an average of 22 micrometers wide -- substantially smaller than the 278-micrometer cake formed by traditional muds. GO blocked pores many times smaller than the flakes' original diameter by folding.

Aside from making the filter cake much thinner, which would give a drill bit more room to turn, the Rice mud contained less than half as many suspended solids; this would also make drilling more efficient as well as more environmentally friendly. Tour and Andreas Lüttge, a Rice professor of Earth science and chemistry, reported last year that GO is reduced to graphite, the material found in pencil lead and a natural mineral, by common bacteria.

"The most exciting aspect is the ability to modify the GO nanoparticle with a variety of functionalities," said James Friedheim, corporate director of fluids research and development at M-I SWACO and a co-author of the research. "Therefore we can 'dial in' our application by picking the right organic chemistry that will suit the purpose. The trick is just choosing the right chemistry for the right purpose."

"There's still a lot to be worked out," Tour said. "We're looking at the rheological properties, the changes in viscosity under shear. In other words, we want to know how viscous this becomes as it goes through a drill head, because that also has implications for efficiency."

Muds may help graphene live up to its commercial promise, Tour said. "Everybody thinks of graphene in electronics or in composites, but this would be a use for large amounts of graphene, and it could happen soon," he said.

Friedheim agreed. "With the team we currently have assembled, Jim Tour's group and some development scientists at M-I SWACO, I am confident that we are close to both technical and commercial success."

Other authors of the paper are Rice graduate student Gabriel Ceriotti, former Rice research associates Kurt Wilson and Jay Lomeda, and M-I SWACO researchers Jason Scorsone and Arvind Patel.

Read the abstract at http://pubs.acs.org/doi/abs/10.1021/am2012799

An image is available for download at http://www.media.rice.edu/images/media/NEWSRELS/1207_starfish.jpg

CAPTION:

Microscopic, star-shaped flakes of functionalized graphene oxide plug holes in pores in a test of the material's ability to serve as a filter cake in fluids used to drill oil wells. The single-atom-thick flakes of treated carbon are pliable but among the strongest materials known. (Credit Tour Group/Rice University)

Located on a 300-acre forested campus in Houston, Rice University is consistently ranked among the nation's top 20 universities by U.S. News & World Report. Rice has highly respected schools of Architecture, Business, Continuing Studies, Engineering, Humanities, Music, Natural Sciences and Social Sciences and is known for its "unconventional wisdom." With 3,708 undergraduates and 2,374 graduate students, Rice's undergraduate student-to-faculty ratio is less than 6-to-1. Its residential college system builds close-knit communities and lifelong friendships, just one reason why Rice has been ranked No. 1 for best quality of life multiple times by the Princeton Review and No. 4 for "best value" among private universities by Kiplinger's Personal Finance. To read "What they're saying about Rice," go to http://www.rice.edu/nationalmedia/Rice.pdf

David Ruth | EurekAlert!
Further information:
http://www.rice.edu

More articles from Physics and Astronomy:

nachricht Study offers new theoretical approach to describing non-equilibrium phase transitions
27.04.2017 | DOE/Argonne National Laboratory

nachricht SwRI-led team discovers lull in Mars' giant impact history
26.04.2017 | Southwest Research Institute

All articles from Physics and Astronomy >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Making lightweight construction suitable for series production

More and more automobile companies are focusing on body parts made of carbon fiber reinforced plastics (CFRP). However, manufacturing and repair costs must be further reduced in order to make CFRP more economical in use. Together with the Volkswagen AG and five other partners in the project HolQueSt 3D, the Laser Zentrum Hannover e.V. (LZH) has developed laser processes for the automatic trimming, drilling and repair of three-dimensional components.

Automated manufacturing processes are the basis for ultimately establishing the series production of CFRP components. In the project HolQueSt 3D, the LZH has...

Im Focus: Wonder material? Novel nanotube structure strengthens thin films for flexible electronics

Reflecting the structure of composites found in nature and the ancient world, researchers at the University of Illinois at Urbana-Champaign have synthesized thin carbon nanotube (CNT) textiles that exhibit both high electrical conductivity and a level of toughness that is about fifty times higher than copper films, currently used in electronics.

"The structural robustness of thin metal films has significant importance for the reliable operation of smart skin and flexible electronics including...

Im Focus: Deep inside Galaxy M87

The nearby, giant radio galaxy M87 hosts a supermassive black hole (BH) and is well-known for its bright jet dominating the spectrum over ten orders of magnitude in frequency. Due to its proximity, jet prominence, and the large black hole mass, M87 is the best laboratory for investigating the formation, acceleration, and collimation of relativistic jets. A research team led by Silke Britzen from the Max Planck Institute for Radio Astronomy in Bonn, Germany, has found strong indication for turbulent processes connecting the accretion disk and the jet of that galaxy providing insights into the longstanding problem of the origin of astrophysical jets.

Supermassive black holes form some of the most enigmatic phenomena in astrophysics. Their enormous energy output is supposed to be generated by the...

Im Focus: A Quantum Low Pass for Photons

Physicists in Garching observe novel quantum effect that limits the number of emitted photons.

The probability to find a certain number of photons inside a laser pulse usually corresponds to a classical distribution of independent events, the so-called...

Im Focus: Microprocessors based on a layer of just three atoms

Microprocessors based on atomically thin materials hold the promise of the evolution of traditional processors as well as new applications in the field of flexible electronics. Now, a TU Wien research team led by Thomas Müller has made a breakthrough in this field as part of an ongoing research project.

Two-dimensional materials, or 2D materials for short, are extremely versatile, although – or often more precisely because – they are made up of just one or a...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Fighting drug resistant tuberculosis – InfectoGnostics meets MYCO-NET² partners in Peru

28.04.2017 | Event News

Expert meeting “Health Business Connect” will connect international medical technology companies

20.04.2017 | Event News

Wenn der Computer das Gehirn austrickst

18.04.2017 | Event News

 
Latest News

Wireless power can drive tiny electronic devices in the GI tract

28.04.2017 | Medical Engineering

Ice cave in Transylvania yields window into region's past

28.04.2017 | Earth Sciences

Nose2Brain – Better Therapy for Multiple Sclerosis

28.04.2017 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>