Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:


Freeze! Watching alloys change from liquid to solid could lead to better metals


If you put a camera in the ice machine and watched water turn into ice, the process would look simple. But the mechanism behind liquids turning to solids is actually quite complex, and understanding it better could improve design and production of metals. A recent investigation aboard the International Space Station contributed to that understanding.

A series of experiments conducted in the Directional Solidification Insert (DSI) of the Device for the study of Critical Liquids and Crystallization (DECLIC) used transparent alloys to observe microstructures that form at the point the material solidifies.

This image shows the dendritic pattern of the Succinonitrile-Camphor alloy grown in microgravity, seen from the top.

Credit: Nathalie Bergeon

These alloys, or "plastic crystals," freeze or solidify the same way metals do and form the same microstructures in the process. But because metals are opaque, researchers have to analyze the process of solidification after the fact.

With the transparent alloys, they can observe solidification as it happens. Using transparent alloys also makes it possible to perform multiple experiments on the same sample, and transferring images to the ground for analysis, rather than actual samples, greatly reduces the cost.

The DSI recorded images during the entire solidification process. Top views clearly show the microstructure pattern forming at the interface between liquid and solid, and side views provide the shape and motion of that interface.

Alloy solidification involves crystallizing or freezing a liquid mixture of different atomic constituents. For example, a mixture of iron and carbon hardens into steel.

"The distribution of these constituents in the solid depends on the growth process and behavior at the interface between solid and liquid," explains principal investigator Nathalie Bergeon, Ph.D., Institut Materiaux Microelectronique Nanosciences de Provence in France.

The process can be controlled by applying a temperature gradient and pulling the liquid toward the cold part to solidify, a technique known as directional solidification and one of the key ways to study solidification.

During directional solidification, the liquid-solid interface develops either three-dimensional cell-like structures or snowflake-like dendrites. Their pattern and size play key roles in the mechanical and physical properties of the material; for example, finer-sized structures generally yield stronger materials. These characteristics play a role in all materials processed by commercial solidification techniques, such as continuous casting and laser welding.

Gravity has a strong effect on those characteristics, but that influence is greatly reduced in the microgravity environment of the space station, offering controlled conditions for study. Better understanding of these microstructure formations will, in turn, help scientists design and produce more reliable materials and materials with specific properties, as well as help to develop and test solidification models.

Observing these processes in a microgravity environment also helps scientists refine theoretical models and numerical simulations of metallic alloys. Ultimately, this work could result in new and better materials for use in manufacturing on Earth. Cell and dendrite characteristics and their effect on materials were recently published in the journal Acta Materiala.

Investigators also found that the cells and dendrites that form during solidification sometimes adopt surprising behaviors. For example, for certain growth parameters, the three-dimensional cellular structures moved or oscillated as they grew, expanding and contracting rhythmically much like lungs do when someone breathes.

The cells oscillate according to the underlying pattern they formed. These breath-like oscillations can split cells if they expand too much or cause them to disappear if they contract too much. These findings were published in Physical Review Letters.

In addition to the directional solidification study, DECLIC has been used to investigate low and high temperature critical fluids behavior, chemical reactivity in supercritical water, and transparent media under microgravity. The tool was developed by the French Space Agency (CNES) and operates as a joint project between CNES and NASA. Researchers at Aix Marseille Universite, France; Iowa State University; and Northeastern University, Massachusetts, collaborated on the DECLIC-DSI investigation.

We may not be interested in watching the water in our ice machine freeze, but understanding the solidification process will help researchers improve metal materials used for pipes, airplane wings, turbine blades and other applications.

Laura Niles | EurekAlert!

More articles from Physics and Astronomy:

nachricht First results of NSTX-U research operations
26.10.2016 | DOE/Princeton Plasma Physics Laboratory

nachricht Scientists discover particles similar to Majorana fermions
25.10.2016 | Chinese Academy of Sciences Headquarters

All articles from Physics and Astronomy >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Etching Microstructures with Lasers

Ultrafast lasers have introduced new possibilities in engraving ultrafine structures, and scientists are now also investigating how to use them to etch microstructures into thin glass. There are possible applications in analytics (lab on a chip) and especially in electronics and the consumer sector, where great interest has been shown.

This new method was born of a surprising phenomenon: irradiating glass in a particular way with an ultrafast laser has the effect of making the glass up to a...

Im Focus: Light-driven atomic rotations excite magnetic waves

Terahertz excitation of selected crystal vibrations leads to an effective magnetic field that drives coherent spin motion

Controlling functional properties by light is one of the grand goals in modern condensed matter physics and materials science. A new study now demonstrates how...

Im Focus: New 3-D wiring technique brings scalable quantum computers closer to reality

Researchers from the Institute for Quantum Computing (IQC) at the University of Waterloo led the development of a new extensible wiring technique capable of controlling superconducting quantum bits, representing a significant step towards to the realization of a scalable quantum computer.

"The quantum socket is a wiring method that uses three-dimensional wires based on spring-loaded pins to address individual qubits," said Jeremy Béjanin, a PhD...

Im Focus: Scientists develop a semiconductor nanocomposite material that moves in response to light

In a paper in Scientific Reports, a research team at Worcester Polytechnic Institute describes a novel light-activated phenomenon that could become the basis for applications as diverse as microscopic robotic grippers and more efficient solar cells.

A research team at Worcester Polytechnic Institute (WPI) has developed a revolutionary, light-activated semiconductor nanocomposite material that can be used...

Im Focus: Diamonds aren't forever: Sandia, Harvard team create first quantum computer bridge

By forcefully embedding two silicon atoms in a diamond matrix, Sandia researchers have demonstrated for the first time on a single chip all the components needed to create a quantum bridge to link quantum computers together.

"People have already built small quantum computers," says Sandia researcher Ryan Camacho. "Maybe the first useful one won't be a single giant quantum computer...

All Focus news of the innovation-report >>>



Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

Agricultural Trade Developments and Potentials in Central Asia and the South Caucasus

14.10.2016 | Event News

World Health Summit – Day Three: A Call to Action

12.10.2016 | Event News

Latest News

The gene of autumn colours

27.10.2016 | Life Sciences

Polymer scaffolds build a better pill to swallow

27.10.2016 | Life Sciences

Greater Range and Longer Lifetime

26.10.2016 | Power and Electrical Engineering

More VideoLinks >>>