Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Free from approximations

19.01.2009
A novel numerical technique permits researchers to study the interaction between elementary particles within a material without approximations

An international team of researchers has developed a numerical modeling technique to study specific types of particles called excitons, which consist of a positively and a negatively charged electron and hole, respectively. The technique includes the influence of a material’s internal structure—the so-called host lattice—without the need to make approximations of any sort (1).

In an exciton, the electron and the hole are bound together by an electric attraction—known as the Coulomb force — in a fashion very similar to that of an electron and a positron in a hydrogen atom. The presence of the host lattice and its thermal and magnetic excitations that consist of phonons and magnons, respectively—known collectively as the ‘bosonic’ field—can affect the excitons considerably.

The researchers, including Andrei Mishchenko from the RIKEN Advanced Science Institute in Wako, aimed to develop a technique to study the excitons’ interaction with phonons in an exact way. In particular, they focused on taking into consideration the fact that phonons do not act instantaneously as occurs in the Coulomb attraction. “Previously, the only way to treat the exchange [between electrons and holes] by bosons was an instantaneous approximation, where the influence of particle–boson interaction was included into the model by renormalization of the instantaneous coupling,” explains Mishchenko.

Mishchenko and colleagues’ technique is known as a Diagrammatic Monte Carlo Method and is based on the diagrams that the Nobel laureate Richard Feynman introduced to quantum field theory. The method per se existed already and was normally used with all variables expressed as a function of spatial coordinates. This, however, limits the size of the area that can be examined in a calculation. The team therefore formulated the algorithm for momentum space. This provides the “possibility to overcome the limitation of the direct space method [for] finite systems and handle the problem [in] a macroscopic system,” says Mishchenko.

Like any new theoretical method, the team’s numerical technique must be compared with known scenarios to verify its validity, so Mishchenko and colleagues used it to study excitons with different values for the electron and hole masses. They found very good agreement with previous theories within the limit in which it is reasonable to neglect any retardation effect. Importantly however, the results show that in standard conditions it is incorrect to neglect the retardation.

As Mishchenko explains: “Our ‘free-from-approximations’ results show that the domain of validity of the instantaneous approximation is very limited.”

Reference

1. Burovski, E., Fehske, H. & Mishchenko, A.S. Exact Treatment of Exciton-Polaron Formation by Diagrammatic Monte Carlo Simulations. Physical Review Letters 101, 116403 (2008).

The corresponding author for this highlight is based at the RIKEN Theoretical Design Team

Saeko Okada | ResearchSEA
Further information:
http://www.rikenresearch.riken.jp/research/625/
http://www.kooperation-international.de

More articles from Physics and Astronomy:

nachricht NASA detects solar flare pulses at Sun and Earth
17.11.2017 | NASA/Goddard Space Flight Center

nachricht Pluto's hydrocarbon haze keeps dwarf planet colder than expected
16.11.2017 | University of California - Santa Cruz

All articles from Physics and Astronomy >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: A “cosmic snake” reveals the structure of remote galaxies

The formation of stars in distant galaxies is still largely unexplored. For the first time, astron-omers at the University of Geneva have now been able to closely observe a star system six billion light-years away. In doing so, they are confirming earlier simulations made by the University of Zurich. One special effect is made possible by the multiple reflections of images that run through the cosmos like a snake.

Today, astronomers have a pretty accurate idea of how stars were formed in the recent cosmic past. But do these laws also apply to older galaxies? For around a...

Im Focus: Visual intelligence is not the same as IQ

Just because someone is smart and well-motivated doesn't mean he or she can learn the visual skills needed to excel at tasks like matching fingerprints, interpreting medical X-rays, keeping track of aircraft on radar displays or forensic face matching.

That is the implication of a new study which shows for the first time that there is a broad range of differences in people's visual ability and that these...

Im Focus: Novel Nano-CT device creates high-resolution 3D-X-rays of tiny velvet worm legs

Computer Tomography (CT) is a standard procedure in hospitals, but so far, the technology has not been suitable for imaging extremely small objects. In PNAS, a team from the Technical University of Munich (TUM) describes a Nano-CT device that creates three-dimensional x-ray images at resolutions up to 100 nanometers. The first test application: Together with colleagues from the University of Kassel and Helmholtz-Zentrum Geesthacht the researchers analyzed the locomotory system of a velvet worm.

During a CT analysis, the object under investigation is x-rayed and a detector measures the respective amount of radiation absorbed from various angles....

Im Focus: Researchers Develop Data Bus for Quantum Computer

The quantum world is fragile; error correction codes are needed to protect the information stored in a quantum object from the deteriorating effects of noise. Quantum physicists in Innsbruck have developed a protocol to pass quantum information between differently encoded building blocks of a future quantum computer, such as processors and memories. Scientists may use this protocol in the future to build a data bus for quantum computers. The researchers have published their work in the journal Nature Communications.

Future quantum computers will be able to solve problems where conventional computers fail today. We are still far away from any large-scale implementation,...

Im Focus: Wrinkles give heat a jolt in pillared graphene

Rice University researchers test 3-D carbon nanostructures' thermal transport abilities

Pillared graphene would transfer heat better if the theoretical material had a few asymmetric junctions that caused wrinkles, according to Rice University...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Ecology Across Borders: International conference brings together 1,500 ecologists

15.11.2017 | Event News

Road into laboratory: Users discuss biaxial fatigue-testing for car and truck wheel

15.11.2017 | Event News

#Berlin5GWeek: The right network for Industry 4.0

30.10.2017 | Event News

 
Latest News

NASA detects solar flare pulses at Sun and Earth

17.11.2017 | Physics and Astronomy

NIST scientists discover how to switch liver cancer cell growth from 2-D to 3-D structures

17.11.2017 | Health and Medicine

The importance of biodiversity in forests could increase due to climate change

17.11.2017 | Studies and Analyses

VideoLinks
B2B-VideoLinks
More VideoLinks >>>