Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Fraunhofer SCAI and Flowmaster Limited implement MpCCI Flowmaster Adaptor

29.04.2009
The Fraunhofer-Institute for Algorithms and Scientific Computing SCAI and Flowmaster Limited currently allocate a coupling adaptor between Flowmaster and MpCCI, bringing together the speed and robustness of 1D system modelling with the complexity of 3D CFD and CAE tools.

MpCCI (Mesh-based parallel Code Coupling Interface) has been developed by the Fraunhofer-Institute SCAI to link a wide variety of simulation programs including the 3D CFD applications, Star-CD (from CD-adapco) and Fluent.

Under a formal cooperation agreement, Fraunhofer SCAI have partnered with Flowmaster to develop the coupling adaptor which enables 'best-in-class' 1D-3D co-simulation between Flowmaster (for calculations of the entire flow system) and CFD (to perform detailed computational calculations).

Driven by the need from organisations with large multidisciplinary, multifunctional project teams, the MpCCI Flowmaster Adaptor has been developed to give stakeholders in the design process the ability to understand how various simulation models interact with each other in pursuit of a virtual prototype.

David Kelsall, Product Manager for Flowmaster Limited, explains: "Developing a 3D CFD model for an entire system - such as an automotive cooling system - presents significant challenges. Creating the computational models and their meshes may take a long time and the total number of cells required may make the calculations intractable (i.e. they may take too long, if they can be done at all). By co-simulating 1D with 3D CFD, more realistic boundary conditions and component models can be obtained, providing a deeper understanding of complex engineering systems. Already we are beginning to see the benefit of the MpCCI Flowmaster Adaptor as we have been working with key customers to run pilot projects using MpCCI to link their 1D Flowmaster (system) models with 3D-CFD (Fluent) models, modelling very detailed behaviour in part of the system."

"During the last two or three years we received an increasing number of requests for this type of 1D-3D solution. In particular engineers from the automotive, aerospace and turbine sectors have asked for a standardised software solution to combine their overall system design with realistic 3D fluid analysis of critical components. The MpCCI Flowmaster Adaptor will provide these industrial users with a new level of design and analysis capabilities," adds Klaus Wolf, Deputy Head of Simulation Engineering Department at Fraunhofer SCAI.

MpCCI and the Flowmaster code adaptor have been developed and are distributed by Fraunhofer SCAI. For more information, please contact mpcci@scai.fraunhofer.de or visit www.mpcci.de.

About Fraunhofer SCAI

Fraunhofer SCAI is a member Institute of the Fraunhofer-Gesellschaft, which undertakes applied research in Germany for the benefit of industry and government. Fraunhofer SCAI specialises in algorithms and numerical methods and has developed MpCCI (Mesh-based parallel Code Coupling Interface) to link together a wide variety of simulation programs, including the 3D CFD applications, Star-CD and Fluent. Most typically, MpCCI enables multi-physics or fluid structure interaction computations between various commercial applications including Abaqus, ANSYS, ANSYS Fluent, Flowmaster, Flux, ICEPAK, MSC.Marc, Permas, Star-CD and RadTherm; further code interfaces are under development. An API may be used to adopt own internal or research codes to the MpCCI environment.

About Flowmaster Group

Flowmaster Group is an international organisation with over 18 years experience providing industry leading fluid systems simulation software to the aerospace, automotive, marine, oil & gas, power generation, process, rail and water industries. With its headquarters in the United Kingdom, the Flowmaster Group employs 70 people and has offices in the USA, Germany and India.

Flowmaster system simulation software enables design engineers and analysts to understand the complex internal flow and thermal effects within fluid systems at the concept stage and throughout the development process. Flowmaster provides users with a greater understanding of fluid systems much earlier, increasing quality and performance whilst shortening the development cycle.

Michael Krapp | Fraunhofer Gesellschaft
Further information:
http://www.scai.fraunhofer.de
http://www.mpcci.de
http://www.flowmaster.com

More articles from Physics and Astronomy:

nachricht Tune your radio: galaxies sing while forming stars
21.02.2017 | Max-Planck-Institut für Radioastronomie

nachricht Breakthrough with a chain of gold atoms
17.02.2017 | Universität Konstanz

All articles from Physics and Astronomy >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Breakthrough with a chain of gold atoms

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

Im Focus: DNA repair: a new letter in the cell alphabet

Results reveal how discoveries may be hidden in scientific “blind spots”

Cells need to repair damaged DNA in our genes to prevent the development of cancer and other diseases. Our cells therefore activate and send “repair-proteins”...

Im Focus: Dresdner scientists print tomorrow’s world

The Fraunhofer IWS Dresden and Technische Universität Dresden inaugurated their jointly operated Center for Additive Manufacturing Dresden (AMCD) with a festive ceremony on February 7, 2017. Scientists from various disciplines perform research on materials, additive manufacturing processes and innovative technologies, which build up components in a layer by layer process. This technology opens up new horizons for component design and combinations of functions. For example during fabrication, electrical conductors and sensors are already able to be additively manufactured into components. They provide information about stress conditions of a product during operation.

The 3D-printing technology, or additive manufacturing as it is often called, has long made the step out of scientific research laboratories into industrial...

Im Focus: Mimicking nature's cellular architectures via 3-D printing

Research offers new level of control over the structure of 3-D printed materials

Nature does amazing things with limited design materials. Grass, for example, can support its own weight, resist strong wind loads, and recover after being...

Im Focus: Three Magnetic States for Each Hole

Nanometer-scale magnetic perforated grids could create new possibilities for computing. Together with international colleagues, scientists from the Helmholtz Zentrum Dresden-Rossendorf (HZDR) have shown how a cobalt grid can be reliably programmed at room temperature. In addition they discovered that for every hole ("antidot") three magnetic states can be configured. The results have been published in the journal "Scientific Reports".

Physicist Dr. Rantej Bali from the HZDR, together with scientists from Singapore and Australia, designed a special grid structure in a thin layer of cobalt in...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Booth and panel discussion – The Lindau Nobel Laureate Meetings at the AAAS 2017 Annual Meeting

13.02.2017 | Event News

Complex Loading versus Hidden Reserves

10.02.2017 | Event News

International Conference on Crystal Growth in Freiburg

09.02.2017 | Event News

 
Latest News

Start codons in DNA may be more numerous than previously thought

21.02.2017 | Life Sciences

An alternative to opioids? Compound from marine snail is potent pain reliever

21.02.2017 | Life Sciences

Warming ponds could accelerate climate change

21.02.2017 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>