Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Fraunhofer SCAI and Flowmaster Limited implement MpCCI Flowmaster Adaptor

29.04.2009
The Fraunhofer-Institute for Algorithms and Scientific Computing SCAI and Flowmaster Limited currently allocate a coupling adaptor between Flowmaster and MpCCI, bringing together the speed and robustness of 1D system modelling with the complexity of 3D CFD and CAE tools.

MpCCI (Mesh-based parallel Code Coupling Interface) has been developed by the Fraunhofer-Institute SCAI to link a wide variety of simulation programs including the 3D CFD applications, Star-CD (from CD-adapco) and Fluent.

Under a formal cooperation agreement, Fraunhofer SCAI have partnered with Flowmaster to develop the coupling adaptor which enables 'best-in-class' 1D-3D co-simulation between Flowmaster (for calculations of the entire flow system) and CFD (to perform detailed computational calculations).

Driven by the need from organisations with large multidisciplinary, multifunctional project teams, the MpCCI Flowmaster Adaptor has been developed to give stakeholders in the design process the ability to understand how various simulation models interact with each other in pursuit of a virtual prototype.

David Kelsall, Product Manager for Flowmaster Limited, explains: "Developing a 3D CFD model for an entire system - such as an automotive cooling system - presents significant challenges. Creating the computational models and their meshes may take a long time and the total number of cells required may make the calculations intractable (i.e. they may take too long, if they can be done at all). By co-simulating 1D with 3D CFD, more realistic boundary conditions and component models can be obtained, providing a deeper understanding of complex engineering systems. Already we are beginning to see the benefit of the MpCCI Flowmaster Adaptor as we have been working with key customers to run pilot projects using MpCCI to link their 1D Flowmaster (system) models with 3D-CFD (Fluent) models, modelling very detailed behaviour in part of the system."

"During the last two or three years we received an increasing number of requests for this type of 1D-3D solution. In particular engineers from the automotive, aerospace and turbine sectors have asked for a standardised software solution to combine their overall system design with realistic 3D fluid analysis of critical components. The MpCCI Flowmaster Adaptor will provide these industrial users with a new level of design and analysis capabilities," adds Klaus Wolf, Deputy Head of Simulation Engineering Department at Fraunhofer SCAI.

MpCCI and the Flowmaster code adaptor have been developed and are distributed by Fraunhofer SCAI. For more information, please contact mpcci@scai.fraunhofer.de or visit www.mpcci.de.

About Fraunhofer SCAI

Fraunhofer SCAI is a member Institute of the Fraunhofer-Gesellschaft, which undertakes applied research in Germany for the benefit of industry and government. Fraunhofer SCAI specialises in algorithms and numerical methods and has developed MpCCI (Mesh-based parallel Code Coupling Interface) to link together a wide variety of simulation programs, including the 3D CFD applications, Star-CD and Fluent. Most typically, MpCCI enables multi-physics or fluid structure interaction computations between various commercial applications including Abaqus, ANSYS, ANSYS Fluent, Flowmaster, Flux, ICEPAK, MSC.Marc, Permas, Star-CD and RadTherm; further code interfaces are under development. An API may be used to adopt own internal or research codes to the MpCCI environment.

About Flowmaster Group

Flowmaster Group is an international organisation with over 18 years experience providing industry leading fluid systems simulation software to the aerospace, automotive, marine, oil & gas, power generation, process, rail and water industries. With its headquarters in the United Kingdom, the Flowmaster Group employs 70 people and has offices in the USA, Germany and India.

Flowmaster system simulation software enables design engineers and analysts to understand the complex internal flow and thermal effects within fluid systems at the concept stage and throughout the development process. Flowmaster provides users with a greater understanding of fluid systems much earlier, increasing quality and performance whilst shortening the development cycle.

Michael Krapp | Fraunhofer Gesellschaft
Further information:
http://www.scai.fraunhofer.de
http://www.mpcci.de
http://www.flowmaster.com

More articles from Physics and Astronomy:

nachricht Turning entanglement upside down
22.05.2018 | Universität Innsbruck

nachricht Astronomers release most complete ultraviolet-light survey of nearby galaxies
18.05.2018 | NASA/Goddard Space Flight Center

All articles from Physics and Astronomy >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: LZH showcases laser material processing of tomorrow at the LASYS 2018

At the LASYS 2018, from June 5th to 7th, the Laser Zentrum Hannover e.V. (LZH) will be showcasing processes for the laser material processing of tomorrow in hall 4 at stand 4E75. With blown bomb shells the LZH will present first results of a research project on civil security.

At this year's LASYS, the LZH will exhibit light-based processes such as cutting, welding, ablation and structuring as well as additive manufacturing for...

Im Focus: Self-illuminating pixels for a new display generation

There are videos on the internet that can make one marvel at technology. For example, a smartphone is casually bent around the arm or a thin-film display is rolled in all directions and with almost every diameter. From the user's point of view, this looks fantastic. From a professional point of view, however, the question arises: Is that already possible?

At Display Week 2018, scientists from the Fraunhofer Institute for Applied Polymer Research IAP will be demonstrating today’s technological possibilities and...

Im Focus: Explanation for puzzling quantum oscillations has been found

So-called quantum many-body scars allow quantum systems to stay out of equilibrium much longer, explaining experiment | Study published in Nature Physics

Recently, researchers from Harvard and MIT succeeded in trapping a record 53 atoms and individually controlling their quantum state, realizing what is called a...

Im Focus: Dozens of binaries from Milky Way's globular clusters could be detectable by LISA

Next-generation gravitational wave detector in space will complement LIGO on Earth

The historic first detection of gravitational waves from colliding black holes far outside our galaxy opened a new window to understanding the universe. A...

Im Focus: Entangled atoms shine in unison

A team led by Austrian experimental physicist Rainer Blatt has succeeded in characterizing the quantum entanglement of two spatially separated atoms by observing their light emission. This fundamental demonstration could lead to the development of highly sensitive optical gradiometers for the precise measurement of the gravitational field or the earth's magnetic field.

The age of quantum technology has long been heralded. Decades of research into the quantum world have led to the development of methods that make it possible...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

Save the date: Forum European Neuroscience – 07-11 July 2018 in Berlin, Germany

02.05.2018 | Event News

Invitation to the upcoming "Current Topics in Bioinformatics: Big Data in Genomics and Medicine"

13.04.2018 | Event News

Unique scope of UV LED technologies and applications presented in Berlin: ICULTA-2018

12.04.2018 | Event News

 
Latest News

Designer cells: artificial enzyme can activate a gene switch

22.05.2018 | Life Sciences

PR of MCC: Carbon removal from atmosphere unavoidable for 1.5 degree target

22.05.2018 | Earth Sciences

Achema 2018: New camera system monitors distillation and helps save energy

22.05.2018 | Trade Fair News

VideoLinks
Science & Research
Overview of more VideoLinks >>>