Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Fraunhofer SCAI and Flowmaster Limited implement MpCCI Flowmaster Adaptor

29.04.2009
The Fraunhofer-Institute for Algorithms and Scientific Computing SCAI and Flowmaster Limited currently allocate a coupling adaptor between Flowmaster and MpCCI, bringing together the speed and robustness of 1D system modelling with the complexity of 3D CFD and CAE tools.

MpCCI (Mesh-based parallel Code Coupling Interface) has been developed by the Fraunhofer-Institute SCAI to link a wide variety of simulation programs including the 3D CFD applications, Star-CD (from CD-adapco) and Fluent.

Under a formal cooperation agreement, Fraunhofer SCAI have partnered with Flowmaster to develop the coupling adaptor which enables 'best-in-class' 1D-3D co-simulation between Flowmaster (for calculations of the entire flow system) and CFD (to perform detailed computational calculations).

Driven by the need from organisations with large multidisciplinary, multifunctional project teams, the MpCCI Flowmaster Adaptor has been developed to give stakeholders in the design process the ability to understand how various simulation models interact with each other in pursuit of a virtual prototype.

David Kelsall, Product Manager for Flowmaster Limited, explains: "Developing a 3D CFD model for an entire system - such as an automotive cooling system - presents significant challenges. Creating the computational models and their meshes may take a long time and the total number of cells required may make the calculations intractable (i.e. they may take too long, if they can be done at all). By co-simulating 1D with 3D CFD, more realistic boundary conditions and component models can be obtained, providing a deeper understanding of complex engineering systems. Already we are beginning to see the benefit of the MpCCI Flowmaster Adaptor as we have been working with key customers to run pilot projects using MpCCI to link their 1D Flowmaster (system) models with 3D-CFD (Fluent) models, modelling very detailed behaviour in part of the system."

"During the last two or three years we received an increasing number of requests for this type of 1D-3D solution. In particular engineers from the automotive, aerospace and turbine sectors have asked for a standardised software solution to combine their overall system design with realistic 3D fluid analysis of critical components. The MpCCI Flowmaster Adaptor will provide these industrial users with a new level of design and analysis capabilities," adds Klaus Wolf, Deputy Head of Simulation Engineering Department at Fraunhofer SCAI.

MpCCI and the Flowmaster code adaptor have been developed and are distributed by Fraunhofer SCAI. For more information, please contact mpcci@scai.fraunhofer.de or visit www.mpcci.de.

About Fraunhofer SCAI

Fraunhofer SCAI is a member Institute of the Fraunhofer-Gesellschaft, which undertakes applied research in Germany for the benefit of industry and government. Fraunhofer SCAI specialises in algorithms and numerical methods and has developed MpCCI (Mesh-based parallel Code Coupling Interface) to link together a wide variety of simulation programs, including the 3D CFD applications, Star-CD and Fluent. Most typically, MpCCI enables multi-physics or fluid structure interaction computations between various commercial applications including Abaqus, ANSYS, ANSYS Fluent, Flowmaster, Flux, ICEPAK, MSC.Marc, Permas, Star-CD and RadTherm; further code interfaces are under development. An API may be used to adopt own internal or research codes to the MpCCI environment.

About Flowmaster Group

Flowmaster Group is an international organisation with over 18 years experience providing industry leading fluid systems simulation software to the aerospace, automotive, marine, oil & gas, power generation, process, rail and water industries. With its headquarters in the United Kingdom, the Flowmaster Group employs 70 people and has offices in the USA, Germany and India.

Flowmaster system simulation software enables design engineers and analysts to understand the complex internal flow and thermal effects within fluid systems at the concept stage and throughout the development process. Flowmaster provides users with a greater understanding of fluid systems much earlier, increasing quality and performance whilst shortening the development cycle.

Michael Krapp | Fraunhofer Gesellschaft
Further information:
http://www.scai.fraunhofer.de
http://www.mpcci.de
http://www.flowmaster.com

More articles from Physics and Astronomy:

nachricht Electrocatalysis can advance green transition
23.01.2017 | Technical University of Denmark

nachricht Quantum optical sensor for the first time tested in space – with a laser system from Berlin
23.01.2017 | Ferdinand-Braun-Institut Leibniz-Institut für Höchstfrequenztechnik

All articles from Physics and Astronomy >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Quantum optical sensor for the first time tested in space – with a laser system from Berlin

For the first time ever, a cloud of ultra-cold atoms has been successfully created in space on board of a sounding rocket. The MAIUS mission demonstrates that quantum optical sensors can be operated even in harsh environments like space – a prerequi-site for finding answers to the most challenging questions of fundamental physics and an important innovation driver for everyday applications.

According to Albert Einstein's Equivalence Principle, all bodies are accelerated at the same rate by the Earth's gravity, regardless of their properties. This...

Im Focus: Traffic jam in empty space

New success for Konstanz physicists in studying the quantum vacuum

An important step towards a completely new experimental access to quantum physics has been made at University of Konstanz. The team of scientists headed by...

Im Focus: How gut bacteria can make us ill

HZI researchers decipher infection mechanisms of Yersinia and immune responses of the host

Yersiniae cause severe intestinal infections. Studies using Yersinia pseudotuberculosis as a model organism aim to elucidate the infection mechanisms of these...

Im Focus: Interfacial Superconductivity: Magnetic and superconducting order revealed simultaneously

Researchers from the University of Hamburg in Germany, in collaboration with colleagues from the University of Aarhus in Denmark, have synthesized a new superconducting material by growing a few layers of an antiferromagnetic transition-metal chalcogenide on a bismuth-based topological insulator, both being non-superconducting materials.

While superconductivity and magnetism are generally believed to be mutually exclusive, surprisingly, in this new material, superconducting correlations...

Im Focus: Studying fundamental particles in materials

Laser-driving of semimetals allows creating novel quasiparticle states within condensed matter systems and switching between different states on ultrafast time scales

Studying properties of fundamental particles in condensed matter systems is a promising approach to quantum field theory. Quasiparticles offer the opportunity...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Sustainable Water use in Agriculture in Eastern Europe and Central Asia

19.01.2017 | Event News

12V, 48V, high-voltage – trends in E/E automotive architecture

10.01.2017 | Event News

2nd Conference on Non-Textual Information on 10 and 11 May 2017 in Hannover

09.01.2017 | Event News

 
Latest News

Tracking movement of immune cells identifies key first steps in inflammatory arthritis

23.01.2017 | Health and Medicine

Electrocatalysis can advance green transition

23.01.2017 | Physics and Astronomy

New technology for mass-production of complex molded composite components

23.01.2017 | Process Engineering

VideoLinks
B2B-VideoLinks
More VideoLinks >>>