Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Fraunhofer SCAI and Flowmaster Limited implement MpCCI Flowmaster Adaptor

29.04.2009
The Fraunhofer-Institute for Algorithms and Scientific Computing SCAI and Flowmaster Limited currently allocate a coupling adaptor between Flowmaster and MpCCI, bringing together the speed and robustness of 1D system modelling with the complexity of 3D CFD and CAE tools.

MpCCI (Mesh-based parallel Code Coupling Interface) has been developed by the Fraunhofer-Institute SCAI to link a wide variety of simulation programs including the 3D CFD applications, Star-CD (from CD-adapco) and Fluent.

Under a formal cooperation agreement, Fraunhofer SCAI have partnered with Flowmaster to develop the coupling adaptor which enables 'best-in-class' 1D-3D co-simulation between Flowmaster (for calculations of the entire flow system) and CFD (to perform detailed computational calculations).

Driven by the need from organisations with large multidisciplinary, multifunctional project teams, the MpCCI Flowmaster Adaptor has been developed to give stakeholders in the design process the ability to understand how various simulation models interact with each other in pursuit of a virtual prototype.

David Kelsall, Product Manager for Flowmaster Limited, explains: "Developing a 3D CFD model for an entire system - such as an automotive cooling system - presents significant challenges. Creating the computational models and their meshes may take a long time and the total number of cells required may make the calculations intractable (i.e. they may take too long, if they can be done at all). By co-simulating 1D with 3D CFD, more realistic boundary conditions and component models can be obtained, providing a deeper understanding of complex engineering systems. Already we are beginning to see the benefit of the MpCCI Flowmaster Adaptor as we have been working with key customers to run pilot projects using MpCCI to link their 1D Flowmaster (system) models with 3D-CFD (Fluent) models, modelling very detailed behaviour in part of the system."

"During the last two or three years we received an increasing number of requests for this type of 1D-3D solution. In particular engineers from the automotive, aerospace and turbine sectors have asked for a standardised software solution to combine their overall system design with realistic 3D fluid analysis of critical components. The MpCCI Flowmaster Adaptor will provide these industrial users with a new level of design and analysis capabilities," adds Klaus Wolf, Deputy Head of Simulation Engineering Department at Fraunhofer SCAI.

MpCCI and the Flowmaster code adaptor have been developed and are distributed by Fraunhofer SCAI. For more information, please contact mpcci@scai.fraunhofer.de or visit www.mpcci.de.

About Fraunhofer SCAI

Fraunhofer SCAI is a member Institute of the Fraunhofer-Gesellschaft, which undertakes applied research in Germany for the benefit of industry and government. Fraunhofer SCAI specialises in algorithms and numerical methods and has developed MpCCI (Mesh-based parallel Code Coupling Interface) to link together a wide variety of simulation programs, including the 3D CFD applications, Star-CD and Fluent. Most typically, MpCCI enables multi-physics or fluid structure interaction computations between various commercial applications including Abaqus, ANSYS, ANSYS Fluent, Flowmaster, Flux, ICEPAK, MSC.Marc, Permas, Star-CD and RadTherm; further code interfaces are under development. An API may be used to adopt own internal or research codes to the MpCCI environment.

About Flowmaster Group

Flowmaster Group is an international organisation with over 18 years experience providing industry leading fluid systems simulation software to the aerospace, automotive, marine, oil & gas, power generation, process, rail and water industries. With its headquarters in the United Kingdom, the Flowmaster Group employs 70 people and has offices in the USA, Germany and India.

Flowmaster system simulation software enables design engineers and analysts to understand the complex internal flow and thermal effects within fluid systems at the concept stage and throughout the development process. Flowmaster provides users with a greater understanding of fluid systems much earlier, increasing quality and performance whilst shortening the development cycle.

Michael Krapp | Fraunhofer Gesellschaft
Further information:
http://www.scai.fraunhofer.de
http://www.mpcci.de
http://www.flowmaster.com

More articles from Physics and Astronomy:

nachricht Basque researchers turn light upside down
23.02.2018 | Elhuyar Fundazioa

nachricht Attoseconds break into atomic interior
23.02.2018 | Max-Planck-Institut für Quantenoptik

All articles from Physics and Astronomy >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Attoseconds break into atomic interior

A newly developed laser technology has enabled physicists in the Laboratory for Attosecond Physics (jointly run by LMU Munich and the Max Planck Institute of Quantum Optics) to generate attosecond bursts of high-energy photons of unprecedented intensity. This has made it possible to observe the interaction of multiple photons in a single such pulse with electrons in the inner orbital shell of an atom.

In order to observe the ultrafast electron motion in the inner shells of atoms with short light pulses, the pulses must not only be ultrashort, but very...

Im Focus: Good vibrations feel the force

A group of researchers led by Andrea Cavalleri at the Max Planck Institute for Structure and Dynamics of Matter (MPSD) in Hamburg has demonstrated a new method enabling precise measurements of the interatomic forces that hold crystalline solids together. The paper Probing the Interatomic Potential of Solids by Strong-Field Nonlinear Phononics, published online in Nature, explains how a terahertz-frequency laser pulse can drive very large deformations of the crystal.

By measuring the highly unusual atomic trajectories under extreme electromagnetic transients, the MPSD group could reconstruct how rigid the atomic bonds are...

Im Focus: Developing reliable quantum computers

International research team makes important step on the path to solving certification problems

Quantum computers may one day solve algorithmic problems which even the biggest supercomputers today can’t manage. But how do you test a quantum computer to...

Im Focus: In best circles: First integrated circuit from self-assembled polymer

For the first time, a team of researchers at the Max-Planck Institute (MPI) for Polymer Research in Mainz, Germany, has succeeded in making an integrated circuit (IC) from just a monolayer of a semiconducting polymer via a bottom-up, self-assembly approach.

In the self-assembly process, the semiconducting polymer arranges itself into an ordered monolayer in a transistor. The transistors are binary switches used...

Im Focus: Demonstration of a single molecule piezoelectric effect

Breakthrough provides a new concept of the design of molecular motors, sensors and electricity generators at nanoscale

Researchers from the Institute of Organic Chemistry and Biochemistry of the CAS (IOCB Prague), Institute of Physics of the CAS (IP CAS) and Palacký University...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

2nd International Conference on High Temperature Shape Memory Alloys (HTSMAs)

15.02.2018 | Event News

Aachen DC Grid Summit 2018

13.02.2018 | Event News

How Global Climate Policy Can Learn from the Energy Transition

12.02.2018 | Event News

 
Latest News

Basque researchers turn light upside down

23.02.2018 | Physics and Astronomy

Finnish research group discovers a new immune system regulator

23.02.2018 | Health and Medicine

Attoseconds break into atomic interior

23.02.2018 | Physics and Astronomy

VideoLinks
Science & Research
Overview of more VideoLinks >>>