Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Fraunhofer ISE Has Developed a New Generation of Reference Cells

08.09.2015

Optimized Structure Allows the Calibration of the Expanded Infrared Spectrum

Scientists at the Fraunhofer Institute for Solar Energy Systems ISE have developed a new version of reference cells for calibrating solar cells. At the institute’s calibration laboratory, a new cell type based on negative, conductive silicon material (n-type), was incorporated while the structure of the reference cell was optimized.


Fraunhofer ISE’s new reference cell was developed according to the international standards of the World PV Scale (WPVS).

© Fraunhofer ISE


Spectral response (Relative Spectral Response) of various reference cells in comparison with the new type (HOQ IR ext.).

© Fraunhofer ISE

For the calibration of different types of solar cells, the reference cell’s spectral response can be accurately adjusted using optical filters, thereby significantly reducing any measurement uncertainty.

The new version of the reference cells meets all international standards (World PV Scale and IEC 60904-2). The new cells will allow test laboratories and cell and module manufacturers in particular to significantly improve the quality of their measurements. The outdoor version of the cell also makes it possible to take exact measurements of solar insolation in the field.

The more accurately the irradiation can be measured, the more accurately the performance of PV systems can be determined. For many years, Fraunhofer ISE’s calibration laboratories – CalLab PV Cells and CalLab PV Modules – have been measuring various types of solar cells and PV modules for international customers pursuant to international norms.

Fraunhofer ISE also offers globally recognized services for yield forecasting and monitoring PV systems. Over the past 15 years, advances have been made in the development of reference cells for indoor and outdoor measurements, and technical consulting services for customers such as test laboratories and plant operators, has been expanded.

With their most recent development success, the Freiburg scientists have been able to further improve their already well-established reference cells, and bring to the market a new version of reference cells which meet the World PV Scale Standard (WPVS).

“For our new version of the WPVS reference cells, we’ve completely changed the interior structure,” says Stefan Brachmann of Fraunhofer ISE. “The reference cells were optimized with respect to linearity, stability, homogeneity, and durability.” For the first time, the Freiburg researchers incorporated a silicon solar cell made of n-type material, which allows for a significant expansion of the spectral response (see chart) in comparison to the p-type reference cells, which are still available.

The new reference cells are therefore particularly suited for the calibration of new solar cells and modules that are also n-type based and have better spectral response than the traditional p-type based reference cells. The thermal coupling of the cell and housing was also improved, reducing the temperature gradient between the solar cell and the housing of the reference cell.

In combination with optical filters, the new reference cells can be adjusted for the calibration of various solar cell technologies. The specific recommendation for use is available on the institute’s website https://www.ise.fraunhofer.de/en/service-units/callab-pv-cells-callab-pv-modules....

Teams in the areas of solar cell development and calibration worked together at Fraunhofer ISE to make the new version of the WPVS reference cells a reality. N-type solar cells are being both produced and calibrated under one roof. As the integration into housing will be carried out by long-standing suppliers, the entire manufacturing cycle of the reference cells can be traced.

This process increases the reliability and quality of the products. In addition to the calibration laboratories CalLab PV Cells and CalLab PV Modules, scientists at Fraunhofer ISE specializing in the development and characterization of solar cells, especially material and cell analysis, were also involved in realizing the new version of the WPVS reference cells.

Weitere Informationen:

http://www.ise.fraunhofer.de/en

Karin Schneider | Fraunhofer-Institut für Solare Energiesysteme ISE

More articles from Physics and Astronomy:

nachricht From rocks in Colorado, evidence of a 'chaotic solar system'
23.02.2017 | University of Wisconsin-Madison

nachricht Prediction: More gas-giants will be found orbiting Sun-like stars
22.02.2017 | Carnegie Institution for Science

All articles from Physics and Astronomy >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Breakthrough with a chain of gold atoms

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

Im Focus: DNA repair: a new letter in the cell alphabet

Results reveal how discoveries may be hidden in scientific “blind spots”

Cells need to repair damaged DNA in our genes to prevent the development of cancer and other diseases. Our cells therefore activate and send “repair-proteins”...

Im Focus: Dresdner scientists print tomorrow’s world

The Fraunhofer IWS Dresden and Technische Universität Dresden inaugurated their jointly operated Center for Additive Manufacturing Dresden (AMCD) with a festive ceremony on February 7, 2017. Scientists from various disciplines perform research on materials, additive manufacturing processes and innovative technologies, which build up components in a layer by layer process. This technology opens up new horizons for component design and combinations of functions. For example during fabrication, electrical conductors and sensors are already able to be additively manufactured into components. They provide information about stress conditions of a product during operation.

The 3D-printing technology, or additive manufacturing as it is often called, has long made the step out of scientific research laboratories into industrial...

Im Focus: Mimicking nature's cellular architectures via 3-D printing

Research offers new level of control over the structure of 3-D printed materials

Nature does amazing things with limited design materials. Grass, for example, can support its own weight, resist strong wind loads, and recover after being...

Im Focus: Three Magnetic States for Each Hole

Nanometer-scale magnetic perforated grids could create new possibilities for computing. Together with international colleagues, scientists from the Helmholtz Zentrum Dresden-Rossendorf (HZDR) have shown how a cobalt grid can be reliably programmed at room temperature. In addition they discovered that for every hole ("antidot") three magnetic states can be configured. The results have been published in the journal "Scientific Reports".

Physicist Dr. Rantej Bali from the HZDR, together with scientists from Singapore and Australia, designed a special grid structure in a thin layer of cobalt in...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Booth and panel discussion – The Lindau Nobel Laureate Meetings at the AAAS 2017 Annual Meeting

13.02.2017 | Event News

Complex Loading versus Hidden Reserves

10.02.2017 | Event News

International Conference on Crystal Growth in Freiburg

09.02.2017 | Event News

 
Latest News

From rocks in Colorado, evidence of a 'chaotic solar system'

23.02.2017 | Physics and Astronomy

'Quartz' crystals at the Earth's core power its magnetic field

23.02.2017 | Earth Sciences

Antimicrobial substances identified in Komodo dragon blood

23.02.2017 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>