Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Fortifying Computer Chips for Space Travel

09.09.2015

Berkeley Lab's particle accelerator blasts microprocessors with high-energy beams to toughen them up.

Space is cold, dark, and lonely. Deadly, too, if any one of a million things goes wrong on your spaceship. It's certainly no place for a computer chip to fail, which can happen due to the abundance of radiation bombarding a craft. Worse, ever-shrinking components on microprocessors make computers more prone to damage from high-energy radiation like protons from the sun or cosmic rays from beyond our galaxy.


NASA

Dec. 4, 2014 -- At Space Launch Complex 37 at Cape Canaveral Air Force Station in Florida, fueling of the Delta IV Heavy rocket has been completed. The countdown continues for launch of NASA's Orion spacecraft.

It’s a good thing, then, that engineers know how to make a spaceship's microprocessors more robust. To start, they hit them with high-energy ions from particle accelerators here on Earth. It's a radiation-testing process that finds a chip's weak spots, highlighting when, where, and how engineers need to make the microprocessor tougher.

One of the most long-lived and active space-chip testing programs is at the U.S. Department of Energy's Lawrence Berkeley National Lab (Berkeley Lab). Sitting just up the hill from UC Berkeley, in Berkeley Lab's Building 88, is the 88-Inch Cyclotron, a machine that accelerates ions to high energies along a circular path.

Since 1979, most American satellites have had one or more electronic components go through Berkeley Lab's cyclotron, says Mike Johnson, research coordinator at the 88-Inch Cyclotron. Chips on the Mars rover Curiosity, chips on the Solar Dynamics Observatory, chips on the space shuttles, and chips on the International Space Station have all been put through the paces in the particle accelerator before launch. The goal is relatively simple, says Johnson: it's to "piece together a curve of the likelihood that there's going to be an error."

Mistake-free Mars

NASA has publicly announced that it plans to send astronauts to Mars by the 2030s. A Mars trip would be a multi-year mission that will expose the crew and vessel to more radiation than any other manned mission in history. Currently, Johnson says, some electronics destined for NASA's new Mars-bound space craft called Orion are being tested at the facility.

As with any chip under testing, the Orion processors are mounted in a vacuum chamber in the direct line of fire from a so-called cocktail beam. This beam, Johnson says, mimics protons from coronal mass ejections and cosmic rays, but at lower energies. Because it’s actually a mixture of different ion energies, the cocktail beam lets scientists easily step the energy up or down, depending on the application. For instance, a satellite orbiting Earth feels a different kind of radiation--thanks to protection by Earth's magnetic field--than a capsule taking people to Mars where there's no magnetic field to deflect protons from the sun.

What happens when radiation hits a chip? "As an ion goes through a microprocessor, it leaves a destructive trail of charged particles that can cause temporary disruption or permanent damage," says Johnson. Bombarding a chip in a cyclotron is one of the best ways to see how it fails. "Once you know how the microprocessor is going to behave, you can make parts stronger, re-engineer it, add redundancy or shielding," Johnson says. "It can also help with designing software" that can, for example, automatically reboot a system or reroute certain functions.

In the case of Orion, which last December had its first (unmanned) test flight around Earth, a number of radiation safeguards have already been put in place. Specifically, the microprocessors are, by design, more than a decade old. This is because older electronics contain larger transistors, which means they’re less sensitive to interaction with an ion.

And importantly, the chips themselves are housed within significant radiation shielding. Engineers think the processors in the flight computer won't be at great risk of radiation thanks to their well-tested design and shielding. But plenty of fail-safes have been included just in case. Orion has two backup flight computers that can go online if the main one needs to reboot, a process that takes about 20 seconds. Additionally, there are two other processors within the flight computers running error-checking software to make sure the outputs of the primary processors aren't off. Thus, radiation is unlikely to cause catastrophic electronic failures on Orion.

Cyclotron Past and Future

Berkeley Lab's cyclotron splits its time between chip radiation testing (40 percent) and conducting U.S. Department of Energy nuclear physics research on superheavy elements (60 percent). The elements 110 and 114 were verified at the facility, and numerous new isotopes have been discovered over the last decade. Other Berkeley Lab accelerators, under Glenn Seaborg, were responsible for the discovery of 16 new elements on the periodic table.

The 88-Inch cyclotron was built in the 1960s. The venerable machine is still competitive and relevant today, explains Johnson, because of its ion source, which inject particles into the accelerator. The VENUS Ion Source is currently the most powerful in the world with several world records in terms of its ability to remove electrons from atoms. "Since we can't change the cyclotron magnet, we have one of the most advanced ion sources in the world," Johnson says.

As well as keeping the ion source powerful, engineers at the cyclotron are also making improvements to the beam that blasts the microprocessors during testing. A current project aims to shape the particle beam to be much smaller and more focused. Right now, a microbeam is available that comes in at about 10 microns by 10 microns, but within a year, says Johnson, his team hopes to shrink the size to the sub-micron level to better pinpoint the radiation problems in chips.

In the meantime, engineers come from all over the country to test electronics for a variety of space and terrestrial applications. High-energy particles aren't just in space, after all. A small number of these particles reach the surface of the planet too. Therefore, versions of next-generation chips for phones and computers are currently under evaluation at the cyclotron. More-reliable electronics in space and on Earth: brought to you by the 88-Inch Cyclotron.

###

Lawrence Berkeley National Laboratory addresses the world’s most urgent scientific challenges by advancing sustainable energy, protecting human health, creating new materials, and revealing the origin and fate of the universe. Founded in 1931, Berkeley Lab’s scientific expertise has been recognized with 13 Nobel prizes. The University of California manages Berkeley Lab for the U.S. Department of Energy’s Office of Science. For more, visit http://www.lbl.gov 

DOE’s Office of Science is the single largest supporter of basic research in the physical sciences in the United States, and is working to address some of the most pressing challenges of our time. For more information, please visit science.energy.gov.

Contact Information
Jon Weiner
jrweiner@lbl.gov
Phone: 510-486-4014

Jon Weiner | newswise

Further reports about: Computer Chips Earth Mars Space cosmic rays cyclotron ions microprocessor

More articles from Physics and Astronomy:

nachricht Climate cycles may explain how running water carved Mars' surface features
02.12.2016 | Penn State

nachricht What do Netflix, Google and planetary systems have in common?
02.12.2016 | University of Toronto

All articles from Physics and Astronomy >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Novel silicon etching technique crafts 3-D gradient refractive index micro-optics

A multi-institutional research collaboration has created a novel approach for fabricating three-dimensional micro-optics through the shape-defined formation of porous silicon (PSi), with broad impacts in integrated optoelectronics, imaging, and photovoltaics.

Working with colleagues at Stanford and The Dow Chemical Company, researchers at the University of Illinois at Urbana-Champaign fabricated 3-D birefringent...

Im Focus: Quantum Particles Form Droplets

In experiments with magnetic atoms conducted at extremely low temperatures, scientists have demonstrated a unique phase of matter: The atoms form a new type of quantum liquid or quantum droplet state. These so called quantum droplets may preserve their form in absence of external confinement because of quantum effects. The joint team of experimental physicists from Innsbruck and theoretical physicists from Hannover report on their findings in the journal Physical Review X.

“Our Quantum droplets are in the gas phase but they still drop like a rock,” explains experimental physicist Francesca Ferlaino when talking about the...

Im Focus: MADMAX: Max Planck Institute for Physics takes up axion research

The Max Planck Institute for Physics (MPP) is opening up a new research field. A workshop from November 21 - 22, 2016 will mark the start of activities for an innovative axion experiment. Axions are still only purely hypothetical particles. Their detection could solve two fundamental problems in particle physics: What dark matter consists of and why it has not yet been possible to directly observe a CP violation for the strong interaction.

The “MADMAX” project is the MPP’s commitment to axion research. Axions are so far only a theoretical prediction and are difficult to detect: on the one hand,...

Im Focus: Molecules change shape when wet

Broadband rotational spectroscopy unravels structural reshaping of isolated molecules in the gas phase to accommodate water

In two recent publications in the Journal of Chemical Physics and in the Journal of Physical Chemistry Letters, researchers around Melanie Schnell from the Max...

Im Focus: Fraunhofer ISE Develops Highly Compact, High Frequency DC/DC Converter for Aviation

The efficiency of power electronic systems is not solely dependent on electrical efficiency but also on weight, for example, in mobile systems. When the weight of relevant components and devices in airplanes, for instance, is reduced, fuel savings can be achieved and correspondingly greenhouse gas emissions decreased. New materials and components based on gallium nitride (GaN) can help to reduce weight and increase the efficiency. With these new materials, power electronic switches can be operated at higher switching frequency, resulting in higher power density and lower material costs.

Researchers at the Fraunhofer Institute for Solar Energy Systems ISE together with partners have investigated how these materials can be used to make power...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

ICTM Conference 2017: Production technology for turbomachine manufacturing of the future

16.11.2016 | Event News

Innovation Day Laser Technology – Laser Additive Manufacturing

01.11.2016 | Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

 
Latest News

UTSA study describes new minimally invasive device to treat cancer and other illnesses

02.12.2016 | Medical Engineering

Plasma-zapping process could yield trans fat-free soybean oil product

02.12.2016 | Agricultural and Forestry Science

What do Netflix, Google and planetary systems have in common?

02.12.2016 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>