Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Forschungszentrum Jülich Plans Novel Neutron Source

18.02.2016

Research with neutrons offers unique insights into the internal structure of matter, making it a key technology for many areas of science. These complex studies are often undertaken at research reactors, many of which will reach the end of their operational life in the coming years.

Forschungszentrum Jülich has begun to develop a concept for cost-efficient neutron sources which could replace mid-sized facilities. The new sources will operate without using reactor-typical chain reactions. Even smaller facilities on a laboratory scale can be set up using the same principle.


The Jülich project team aims to implement an extremely compact neutron source using accelerators with relatively low final energy through the newest technological developments.

Forschungszentrum Jülich


From left: Prof. T. Brückel, JCNS, Prof. G. Natour, ZEA-1, Prof. H. Schober, ILL, Prof. D. Richter, JCNS, Prof. S. Schmidt, Jülich Board of Directors (BoD), and Prof. R. Wagner, formerly Jülich BoD.

Forschungszentrum Jülich

Scientists presented the concept and the results of the first component tests in the January edition of the international journal European Physics Journal Plus (DOI: 10.1140/epjp/i2016-16019-5) and at the tenth anniversary celebrations of the Jülich Centre for Neutron Science (JCNS) on 17 February.

“High-performance microscopic analysis methods are an important requirement for the development of new materials and material systems. Due to their unique properties, neutrons are indispensable for scientists from many disciplines, from physics to chemistry, biology and geology, right through to material and engineering sciences,” emphasized Prof. Sebastian M. Schmidt, member of the Jülich Board of Directors, at the ceremony in Jülich.

The uncharged components of atomic nuclei reveal, among other things, where atoms are located, how they move and what their magnetic properties are. In contrast to techniques such as electron microscopy or X-ray diffraction, neutrons also provide information about light elements and can also be used on sensitive samples.

These scientifically and technically demanding analyses take place at large and medium-sized specialized research facilities, so called “neutron sources”, often at research reactors. However, several of these are due to be taken out of service over the next five years.

The Jülich concept is based on the use of the newest technological developments, enabling an accelerator-based production of tightly bundled neutrons. Unlike the situation at reactors, chain reactions do not take place – instead, neutrons are released by colliding accelerated deuterium atoms with metal foil.

The new neutron sources allow neutrons to be used especially efficiently for selected purposes. “For specific scientific questions, it will be possible to achieve results that are not inferior to those obtained at current leading sources, and at around just 30% of the cost,” explained Prof. Thomas Brückel, Director at the JCNS. The bundled neutrons are especially suitable for use in studying small samples such as protein crystals that are often smaller than a cubic millimeter. In this way, for example, the position of lighter elements can be determined, which is often of crucial importance in terms of biological functions.

To begin with, the project’s feasibility will be demonstrated using a prototype. Jülich scientists have already optimized the first components of the HBS using computer simulations and tests on prototypes. The Helmholtz Association has included the project in its “Roadmap for Research Infrastructures 2015” due to its importance for Germany as a centre for research.

“In terms of research with neutrons, Europe leads the way world-wide, thanks to its network of neutron sources. Even the future European Spallation Source (ESS) currently being developed in Lund, Sweden, as the most powerful accelerator-based neutron source in the world cannot fill the gaps created by the decommissioning of the research reactors,” explained Brückel. “In order to carry out certain types of scientific experiments, acquire users, train junior researchers and develop new methods, we still need a European network of neutron sources.”

The Jülich Centre for Neutron Science

Since its establishment in 2006, the Jülich Centre for Neutron Science has been successful in its strategy, unique in neutron research, of offering its users outstanding instruments at leading international neutron sources, and combining this with an excellent scientific environment for selected research areas. JCNS is involved in operating five instruments at the Institut Laue-Langevin in Grenoble, France, the most powerful neutron source in the world. Under the umbrella of the Heinz Maier-Leibnitz Zentrum, at the most powerful German research neutron source in Garching near Munich, JCNS is currently operating eleven neutron instruments, together with partner institutions; two further instruments are under construction. At the Spallation Neutron Source in Oak Ridge, USA, a Jülich neutron spectrometer is the only non-American measuring instrument enabling German and European researchers to gain valuable experience for the construction and operation of instruments for the ESS. Forschungszentrum Jülich has sold three instruments to the China Advanced Research Reactor near Beijing; German researchers are also free to use the instruments there.

Images:

The Jülich project team aims to implement an extremely compact neutron source using accelerators with relatively low final energy through the newest technological developments relating to target, moderators, beam extraction, beam guidance and neutron optics. Optimized for specific types of studies, for instance on small samples, it is set to ideally complement the larger, international facilities.
Copyright: Forschungszentrum Jülich

Prof. Thomas Brückel (left), Director at the JCNS, presented the concept of the high-brilliance neutron source at the tenth anniversary celebrations of the institute. Other speakers were (from left to right): Prof. Dr. Ghaleb Natour, Director at the ZEA, Prof. Dr. Helmut Schober, ILL, Prof. Dr. Dieter Richter, JCNS, Prof. Dr. Sebastian Schmidt, Member of the Jülich Board of Directors, and Prof. Dr. Richard Wagner, former Member of the Jülich Board of Directors.
Copyright: Forschungszentrum Jülich

Original publication:

The Jülich high-brilliance neutron source project;
U. Rücker, T. Cronert, J. Voigt, J.P. Dabruck, P.-E. Doege, J. Ulrich, R. Nabbi, Y. Bessler, M. Butzek, M. Büscher, C. Lange, M. Klaus, T. Gutberlet and T. Brückel;
Eur. Phys. J. Plus (2016) 131: 19;
DOI 10.1140/epjp/i2016-16019-5

Contact:

Prof. Thomas Brückel, Director at the Jülich Centre for Neutron Science und Peter Grünberg Institute – Division “Scattering Methods” (JCNS-2/PGI-4), Forschungszentrum Jülich, Tel. +49 24 61 61-4750, Email: t.brueckel@fz-juelich.de

Press contact:

Angela Wenzik, Science Journalist, Forschungszentrum Jülich,
Tel. +49 24 61 61-6048, Email: a.wenzik@fz-juelich.de

Weitere Informationen:

http://www.fz-juelich.de/portal/EN/ - Forschungszentrum Jülich
http://www.fz-juelich.de/jcns/EN/ - Jülich Centre for Neutron Science
http://www.fz-juelich.de/jcns/EN/Leistungen/High-Brilliance-Neutron-Source/_node... - “The High-Brilliance Neutron Source Project”
http://www.fz-juelich.de/ics/ics-1/EN/UeberUns/JCNSHistory/_node.html - A brief history of JCNS

Dipl.-Biologin Annette Stettien | Forschungszentrum Jülich

Further reports about: Forschungszentrum Jülich Neutron Neutron Science

More articles from Physics and Astronomy:

nachricht A 100-year-old physics problem has been solved at EPFL
23.06.2017 | Ecole Polytechnique Fédérale de Lausanne

nachricht Quantum thermometer or optical refrigerator?
23.06.2017 | National Institute of Standards and Technology (NIST)

All articles from Physics and Astronomy >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Can we see monkeys from space? Emerging technologies to map biodiversity

An international team of scientists has proposed a new multi-disciplinary approach in which an array of new technologies will allow us to map biodiversity and the risks that wildlife is facing at the scale of whole landscapes. The findings are published in Nature Ecology and Evolution. This international research is led by the Kunming Institute of Zoology from China, University of East Anglia, University of Leicester and the Leibniz Institute for Zoo and Wildlife Research.

Using a combination of satellite and ground data, the team proposes that it is now possible to map biodiversity with an accuracy that has not been previously...

Im Focus: Climate satellite: Tracking methane with robust laser technology

Heatwaves in the Arctic, longer periods of vegetation in Europe, severe floods in West Africa – starting in 2021, scientists want to explore the emissions of the greenhouse gas methane with the German-French satellite MERLIN. This is made possible by a new robust laser system of the Fraunhofer Institute for Laser Technology ILT in Aachen, which achieves unprecedented measurement accuracy.

Methane is primarily the result of the decomposition of organic matter. The gas has a 25 times greater warming potential than carbon dioxide, but is not as...

Im Focus: How protons move through a fuel cell

Hydrogen is regarded as the energy source of the future: It is produced with solar power and can be used to generate heat and electricity in fuel cells. Empa researchers have now succeeded in decoding the movement of hydrogen ions in crystals – a key step towards more efficient energy conversion in the hydrogen industry of tomorrow.

As charge carriers, electrons and ions play the leading role in electrochemical energy storage devices and converters such as batteries and fuel cells. Proton...

Im Focus: A unique data centre for cosmological simulations

Scientists from the Excellence Cluster Universe at the Ludwig-Maximilians-Universität Munich have establised "Cosmowebportal", a unique data centre for cosmological simulations located at the Leibniz Supercomputing Centre (LRZ) of the Bavarian Academy of Sciences. The complete results of a series of large hydrodynamical cosmological simulations are available, with data volumes typically exceeding several hundred terabytes. Scientists worldwide can interactively explore these complex simulations via a web interface and directly access the results.

With current telescopes, scientists can observe our Universe’s galaxies and galaxy clusters and their distribution along an invisible cosmic web. From the...

Im Focus: Scientists develop molecular thermometer for contactless measurement using infrared light

Temperature measurements possible even on the smallest scale / Molecular ruby for use in material sciences, biology, and medicine

Chemists at Johannes Gutenberg University Mainz (JGU) in cooperation with researchers of the German Federal Institute for Materials Research and Testing (BAM)...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Plants are networkers

19.06.2017 | Event News

Digital Survival Training for Executives

13.06.2017 | Event News

Global Learning Council Summit 2017

13.06.2017 | Event News

 
Latest News

Quantum thermometer or optical refrigerator?

23.06.2017 | Physics and Astronomy

A 100-year-old physics problem has been solved at EPFL

23.06.2017 | Physics and Astronomy

Equipping form with function

23.06.2017 | Information Technology

VideoLinks
B2B-VideoLinks
More VideoLinks >>>