Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Forschungszentrum Jülich Plans Novel Neutron Source

18.02.2016

Research with neutrons offers unique insights into the internal structure of matter, making it a key technology for many areas of science. These complex studies are often undertaken at research reactors, many of which will reach the end of their operational life in the coming years.

Forschungszentrum Jülich has begun to develop a concept for cost-efficient neutron sources which could replace mid-sized facilities. The new sources will operate without using reactor-typical chain reactions. Even smaller facilities on a laboratory scale can be set up using the same principle.


The Jülich project team aims to implement an extremely compact neutron source using accelerators with relatively low final energy through the newest technological developments.

Forschungszentrum Jülich


From left: Prof. T. Brückel, JCNS, Prof. G. Natour, ZEA-1, Prof. H. Schober, ILL, Prof. D. Richter, JCNS, Prof. S. Schmidt, Jülich Board of Directors (BoD), and Prof. R. Wagner, formerly Jülich BoD.

Forschungszentrum Jülich

Scientists presented the concept and the results of the first component tests in the January edition of the international journal European Physics Journal Plus (DOI: 10.1140/epjp/i2016-16019-5) and at the tenth anniversary celebrations of the Jülich Centre for Neutron Science (JCNS) on 17 February.

“High-performance microscopic analysis methods are an important requirement for the development of new materials and material systems. Due to their unique properties, neutrons are indispensable for scientists from many disciplines, from physics to chemistry, biology and geology, right through to material and engineering sciences,” emphasized Prof. Sebastian M. Schmidt, member of the Jülich Board of Directors, at the ceremony in Jülich.

The uncharged components of atomic nuclei reveal, among other things, where atoms are located, how they move and what their magnetic properties are. In contrast to techniques such as electron microscopy or X-ray diffraction, neutrons also provide information about light elements and can also be used on sensitive samples.

These scientifically and technically demanding analyses take place at large and medium-sized specialized research facilities, so called “neutron sources”, often at research reactors. However, several of these are due to be taken out of service over the next five years.

The Jülich concept is based on the use of the newest technological developments, enabling an accelerator-based production of tightly bundled neutrons. Unlike the situation at reactors, chain reactions do not take place – instead, neutrons are released by colliding accelerated deuterium atoms with metal foil.

The new neutron sources allow neutrons to be used especially efficiently for selected purposes. “For specific scientific questions, it will be possible to achieve results that are not inferior to those obtained at current leading sources, and at around just 30% of the cost,” explained Prof. Thomas Brückel, Director at the JCNS. The bundled neutrons are especially suitable for use in studying small samples such as protein crystals that are often smaller than a cubic millimeter. In this way, for example, the position of lighter elements can be determined, which is often of crucial importance in terms of biological functions.

To begin with, the project’s feasibility will be demonstrated using a prototype. Jülich scientists have already optimized the first components of the HBS using computer simulations and tests on prototypes. The Helmholtz Association has included the project in its “Roadmap for Research Infrastructures 2015” due to its importance for Germany as a centre for research.

“In terms of research with neutrons, Europe leads the way world-wide, thanks to its network of neutron sources. Even the future European Spallation Source (ESS) currently being developed in Lund, Sweden, as the most powerful accelerator-based neutron source in the world cannot fill the gaps created by the decommissioning of the research reactors,” explained Brückel. “In order to carry out certain types of scientific experiments, acquire users, train junior researchers and develop new methods, we still need a European network of neutron sources.”

The Jülich Centre for Neutron Science

Since its establishment in 2006, the Jülich Centre for Neutron Science has been successful in its strategy, unique in neutron research, of offering its users outstanding instruments at leading international neutron sources, and combining this with an excellent scientific environment for selected research areas. JCNS is involved in operating five instruments at the Institut Laue-Langevin in Grenoble, France, the most powerful neutron source in the world. Under the umbrella of the Heinz Maier-Leibnitz Zentrum, at the most powerful German research neutron source in Garching near Munich, JCNS is currently operating eleven neutron instruments, together with partner institutions; two further instruments are under construction. At the Spallation Neutron Source in Oak Ridge, USA, a Jülich neutron spectrometer is the only non-American measuring instrument enabling German and European researchers to gain valuable experience for the construction and operation of instruments for the ESS. Forschungszentrum Jülich has sold three instruments to the China Advanced Research Reactor near Beijing; German researchers are also free to use the instruments there.

Images:

The Jülich project team aims to implement an extremely compact neutron source using accelerators with relatively low final energy through the newest technological developments relating to target, moderators, beam extraction, beam guidance and neutron optics. Optimized for specific types of studies, for instance on small samples, it is set to ideally complement the larger, international facilities.
Copyright: Forschungszentrum Jülich

Prof. Thomas Brückel (left), Director at the JCNS, presented the concept of the high-brilliance neutron source at the tenth anniversary celebrations of the institute. Other speakers were (from left to right): Prof. Dr. Ghaleb Natour, Director at the ZEA, Prof. Dr. Helmut Schober, ILL, Prof. Dr. Dieter Richter, JCNS, Prof. Dr. Sebastian Schmidt, Member of the Jülich Board of Directors, and Prof. Dr. Richard Wagner, former Member of the Jülich Board of Directors.
Copyright: Forschungszentrum Jülich

Original publication:

The Jülich high-brilliance neutron source project;
U. Rücker, T. Cronert, J. Voigt, J.P. Dabruck, P.-E. Doege, J. Ulrich, R. Nabbi, Y. Bessler, M. Butzek, M. Büscher, C. Lange, M. Klaus, T. Gutberlet and T. Brückel;
Eur. Phys. J. Plus (2016) 131: 19;
DOI 10.1140/epjp/i2016-16019-5

Contact:

Prof. Thomas Brückel, Director at the Jülich Centre for Neutron Science und Peter Grünberg Institute – Division “Scattering Methods” (JCNS-2/PGI-4), Forschungszentrum Jülich, Tel. +49 24 61 61-4750, Email: t.brueckel@fz-juelich.de

Press contact:

Angela Wenzik, Science Journalist, Forschungszentrum Jülich,
Tel. +49 24 61 61-6048, Email: a.wenzik@fz-juelich.de

Weitere Informationen:

http://www.fz-juelich.de/portal/EN/ - Forschungszentrum Jülich
http://www.fz-juelich.de/jcns/EN/ - Jülich Centre for Neutron Science
http://www.fz-juelich.de/jcns/EN/Leistungen/High-Brilliance-Neutron-Source/_node... - “The High-Brilliance Neutron Source Project”
http://www.fz-juelich.de/ics/ics-1/EN/UeberUns/JCNSHistory/_node.html - A brief history of JCNS

Dipl.-Biologin Annette Stettien | Forschungszentrum Jülich

Further reports about: Forschungszentrum Jülich Neutron Neutron Science

More articles from Physics and Astronomy:

nachricht Breakthrough with a chain of gold atoms
17.02.2017 | Universität Konstanz

nachricht New functional principle to generate the „third harmonic“
16.02.2017 | Laser Zentrum Hannover e.V.

All articles from Physics and Astronomy >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Breakthrough with a chain of gold atoms

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

Im Focus: DNA repair: a new letter in the cell alphabet

Results reveal how discoveries may be hidden in scientific “blind spots”

Cells need to repair damaged DNA in our genes to prevent the development of cancer and other diseases. Our cells therefore activate and send “repair-proteins”...

Im Focus: Dresdner scientists print tomorrow’s world

The Fraunhofer IWS Dresden and Technische Universität Dresden inaugurated their jointly operated Center for Additive Manufacturing Dresden (AMCD) with a festive ceremony on February 7, 2017. Scientists from various disciplines perform research on materials, additive manufacturing processes and innovative technologies, which build up components in a layer by layer process. This technology opens up new horizons for component design and combinations of functions. For example during fabrication, electrical conductors and sensors are already able to be additively manufactured into components. They provide information about stress conditions of a product during operation.

The 3D-printing technology, or additive manufacturing as it is often called, has long made the step out of scientific research laboratories into industrial...

Im Focus: Mimicking nature's cellular architectures via 3-D printing

Research offers new level of control over the structure of 3-D printed materials

Nature does amazing things with limited design materials. Grass, for example, can support its own weight, resist strong wind loads, and recover after being...

Im Focus: Three Magnetic States for Each Hole

Nanometer-scale magnetic perforated grids could create new possibilities for computing. Together with international colleagues, scientists from the Helmholtz Zentrum Dresden-Rossendorf (HZDR) have shown how a cobalt grid can be reliably programmed at room temperature. In addition they discovered that for every hole ("antidot") three magnetic states can be configured. The results have been published in the journal "Scientific Reports".

Physicist Dr. Rantej Bali from the HZDR, together with scientists from Singapore and Australia, designed a special grid structure in a thin layer of cobalt in...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Booth and panel discussion – The Lindau Nobel Laureate Meetings at the AAAS 2017 Annual Meeting

13.02.2017 | Event News

Complex Loading versus Hidden Reserves

10.02.2017 | Event News

International Conference on Crystal Growth in Freiburg

09.02.2017 | Event News

 
Latest News

Switched-on DNA

20.02.2017 | Materials Sciences

Second cause of hidden hearing loss identified

20.02.2017 | Health and Medicine

Prospect for more effective treatment of nerve pain

20.02.2017 | Health and Medicine

VideoLinks
B2B-VideoLinks
More VideoLinks >>>