Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Forschungszentrum Jülich Plans Novel Neutron Source

18.02.2016

Research with neutrons offers unique insights into the internal structure of matter, making it a key technology for many areas of science. These complex studies are often undertaken at research reactors, many of which will reach the end of their operational life in the coming years.

Forschungszentrum Jülich has begun to develop a concept for cost-efficient neutron sources which could replace mid-sized facilities. The new sources will operate without using reactor-typical chain reactions. Even smaller facilities on a laboratory scale can be set up using the same principle.


The Jülich project team aims to implement an extremely compact neutron source using accelerators with relatively low final energy through the newest technological developments.

Forschungszentrum Jülich


From left: Prof. T. Brückel, JCNS, Prof. G. Natour, ZEA-1, Prof. H. Schober, ILL, Prof. D. Richter, JCNS, Prof. S. Schmidt, Jülich Board of Directors (BoD), and Prof. R. Wagner, formerly Jülich BoD.

Forschungszentrum Jülich

Scientists presented the concept and the results of the first component tests in the January edition of the international journal European Physics Journal Plus (DOI: 10.1140/epjp/i2016-16019-5) and at the tenth anniversary celebrations of the Jülich Centre for Neutron Science (JCNS) on 17 February.

“High-performance microscopic analysis methods are an important requirement for the development of new materials and material systems. Due to their unique properties, neutrons are indispensable for scientists from many disciplines, from physics to chemistry, biology and geology, right through to material and engineering sciences,” emphasized Prof. Sebastian M. Schmidt, member of the Jülich Board of Directors, at the ceremony in Jülich.

The uncharged components of atomic nuclei reveal, among other things, where atoms are located, how they move and what their magnetic properties are. In contrast to techniques such as electron microscopy or X-ray diffraction, neutrons also provide information about light elements and can also be used on sensitive samples.

These scientifically and technically demanding analyses take place at large and medium-sized specialized research facilities, so called “neutron sources”, often at research reactors. However, several of these are due to be taken out of service over the next five years.

The Jülich concept is based on the use of the newest technological developments, enabling an accelerator-based production of tightly bundled neutrons. Unlike the situation at reactors, chain reactions do not take place – instead, neutrons are released by colliding accelerated deuterium atoms with metal foil.

The new neutron sources allow neutrons to be used especially efficiently for selected purposes. “For specific scientific questions, it will be possible to achieve results that are not inferior to those obtained at current leading sources, and at around just 30% of the cost,” explained Prof. Thomas Brückel, Director at the JCNS. The bundled neutrons are especially suitable for use in studying small samples such as protein crystals that are often smaller than a cubic millimeter. In this way, for example, the position of lighter elements can be determined, which is often of crucial importance in terms of biological functions.

To begin with, the project’s feasibility will be demonstrated using a prototype. Jülich scientists have already optimized the first components of the HBS using computer simulations and tests on prototypes. The Helmholtz Association has included the project in its “Roadmap for Research Infrastructures 2015” due to its importance for Germany as a centre for research.

“In terms of research with neutrons, Europe leads the way world-wide, thanks to its network of neutron sources. Even the future European Spallation Source (ESS) currently being developed in Lund, Sweden, as the most powerful accelerator-based neutron source in the world cannot fill the gaps created by the decommissioning of the research reactors,” explained Brückel. “In order to carry out certain types of scientific experiments, acquire users, train junior researchers and develop new methods, we still need a European network of neutron sources.”

The Jülich Centre for Neutron Science

Since its establishment in 2006, the Jülich Centre for Neutron Science has been successful in its strategy, unique in neutron research, of offering its users outstanding instruments at leading international neutron sources, and combining this with an excellent scientific environment for selected research areas. JCNS is involved in operating five instruments at the Institut Laue-Langevin in Grenoble, France, the most powerful neutron source in the world. Under the umbrella of the Heinz Maier-Leibnitz Zentrum, at the most powerful German research neutron source in Garching near Munich, JCNS is currently operating eleven neutron instruments, together with partner institutions; two further instruments are under construction. At the Spallation Neutron Source in Oak Ridge, USA, a Jülich neutron spectrometer is the only non-American measuring instrument enabling German and European researchers to gain valuable experience for the construction and operation of instruments for the ESS. Forschungszentrum Jülich has sold three instruments to the China Advanced Research Reactor near Beijing; German researchers are also free to use the instruments there.

Images:

The Jülich project team aims to implement an extremely compact neutron source using accelerators with relatively low final energy through the newest technological developments relating to target, moderators, beam extraction, beam guidance and neutron optics. Optimized for specific types of studies, for instance on small samples, it is set to ideally complement the larger, international facilities.
Copyright: Forschungszentrum Jülich

Prof. Thomas Brückel (left), Director at the JCNS, presented the concept of the high-brilliance neutron source at the tenth anniversary celebrations of the institute. Other speakers were (from left to right): Prof. Dr. Ghaleb Natour, Director at the ZEA, Prof. Dr. Helmut Schober, ILL, Prof. Dr. Dieter Richter, JCNS, Prof. Dr. Sebastian Schmidt, Member of the Jülich Board of Directors, and Prof. Dr. Richard Wagner, former Member of the Jülich Board of Directors.
Copyright: Forschungszentrum Jülich

Original publication:

The Jülich high-brilliance neutron source project;
U. Rücker, T. Cronert, J. Voigt, J.P. Dabruck, P.-E. Doege, J. Ulrich, R. Nabbi, Y. Bessler, M. Butzek, M. Büscher, C. Lange, M. Klaus, T. Gutberlet and T. Brückel;
Eur. Phys. J. Plus (2016) 131: 19;
DOI 10.1140/epjp/i2016-16019-5

Contact:

Prof. Thomas Brückel, Director at the Jülich Centre for Neutron Science und Peter Grünberg Institute – Division “Scattering Methods” (JCNS-2/PGI-4), Forschungszentrum Jülich, Tel. +49 24 61 61-4750, Email: t.brueckel@fz-juelich.de

Press contact:

Angela Wenzik, Science Journalist, Forschungszentrum Jülich,
Tel. +49 24 61 61-6048, Email: a.wenzik@fz-juelich.de

Weitere Informationen:

http://www.fz-juelich.de/portal/EN/ - Forschungszentrum Jülich
http://www.fz-juelich.de/jcns/EN/ - Jülich Centre for Neutron Science
http://www.fz-juelich.de/jcns/EN/Leistungen/High-Brilliance-Neutron-Source/_node... - “The High-Brilliance Neutron Source Project”
http://www.fz-juelich.de/ics/ics-1/EN/UeberUns/JCNSHistory/_node.html - A brief history of JCNS

Dipl.-Biologin Annette Stettien | Forschungszentrum Jülich

Further reports about: Forschungszentrum Jülich Neutron Neutron Science

More articles from Physics and Astronomy:

nachricht Basque researchers turn light upside down
23.02.2018 | Elhuyar Fundazioa

nachricht Attoseconds break into atomic interior
23.02.2018 | Max-Planck-Institut für Quantenoptik

All articles from Physics and Astronomy >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Attoseconds break into atomic interior

A newly developed laser technology has enabled physicists in the Laboratory for Attosecond Physics (jointly run by LMU Munich and the Max Planck Institute of Quantum Optics) to generate attosecond bursts of high-energy photons of unprecedented intensity. This has made it possible to observe the interaction of multiple photons in a single such pulse with electrons in the inner orbital shell of an atom.

In order to observe the ultrafast electron motion in the inner shells of atoms with short light pulses, the pulses must not only be ultrashort, but very...

Im Focus: Good vibrations feel the force

A group of researchers led by Andrea Cavalleri at the Max Planck Institute for Structure and Dynamics of Matter (MPSD) in Hamburg has demonstrated a new method enabling precise measurements of the interatomic forces that hold crystalline solids together. The paper Probing the Interatomic Potential of Solids by Strong-Field Nonlinear Phononics, published online in Nature, explains how a terahertz-frequency laser pulse can drive very large deformations of the crystal.

By measuring the highly unusual atomic trajectories under extreme electromagnetic transients, the MPSD group could reconstruct how rigid the atomic bonds are...

Im Focus: Developing reliable quantum computers

International research team makes important step on the path to solving certification problems

Quantum computers may one day solve algorithmic problems which even the biggest supercomputers today can’t manage. But how do you test a quantum computer to...

Im Focus: In best circles: First integrated circuit from self-assembled polymer

For the first time, a team of researchers at the Max-Planck Institute (MPI) for Polymer Research in Mainz, Germany, has succeeded in making an integrated circuit (IC) from just a monolayer of a semiconducting polymer via a bottom-up, self-assembly approach.

In the self-assembly process, the semiconducting polymer arranges itself into an ordered monolayer in a transistor. The transistors are binary switches used...

Im Focus: Demonstration of a single molecule piezoelectric effect

Breakthrough provides a new concept of the design of molecular motors, sensors and electricity generators at nanoscale

Researchers from the Institute of Organic Chemistry and Biochemistry of the CAS (IOCB Prague), Institute of Physics of the CAS (IP CAS) and Palacký University...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

2nd International Conference on High Temperature Shape Memory Alloys (HTSMAs)

15.02.2018 | Event News

Aachen DC Grid Summit 2018

13.02.2018 | Event News

How Global Climate Policy Can Learn from the Energy Transition

12.02.2018 | Event News

 
Latest News

Basque researchers turn light upside down

23.02.2018 | Physics and Astronomy

Finnish research group discovers a new immune system regulator

23.02.2018 | Health and Medicine

Attoseconds break into atomic interior

23.02.2018 | Physics and Astronomy

VideoLinks
Science & Research
Overview of more VideoLinks >>>