Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Forschungszentrum Jülich Plans Novel Neutron Source

18.02.2016

Research with neutrons offers unique insights into the internal structure of matter, making it a key technology for many areas of science. These complex studies are often undertaken at research reactors, many of which will reach the end of their operational life in the coming years.

Forschungszentrum Jülich has begun to develop a concept for cost-efficient neutron sources which could replace mid-sized facilities. The new sources will operate without using reactor-typical chain reactions. Even smaller facilities on a laboratory scale can be set up using the same principle.


The Jülich project team aims to implement an extremely compact neutron source using accelerators with relatively low final energy through the newest technological developments.

Forschungszentrum Jülich


From left: Prof. T. Brückel, JCNS, Prof. G. Natour, ZEA-1, Prof. H. Schober, ILL, Prof. D. Richter, JCNS, Prof. S. Schmidt, Jülich Board of Directors (BoD), and Prof. R. Wagner, formerly Jülich BoD.

Forschungszentrum Jülich

Scientists presented the concept and the results of the first component tests in the January edition of the international journal European Physics Journal Plus (DOI: 10.1140/epjp/i2016-16019-5) and at the tenth anniversary celebrations of the Jülich Centre for Neutron Science (JCNS) on 17 February.

“High-performance microscopic analysis methods are an important requirement for the development of new materials and material systems. Due to their unique properties, neutrons are indispensable for scientists from many disciplines, from physics to chemistry, biology and geology, right through to material and engineering sciences,” emphasized Prof. Sebastian M. Schmidt, member of the Jülich Board of Directors, at the ceremony in Jülich.

The uncharged components of atomic nuclei reveal, among other things, where atoms are located, how they move and what their magnetic properties are. In contrast to techniques such as electron microscopy or X-ray diffraction, neutrons also provide information about light elements and can also be used on sensitive samples.

These scientifically and technically demanding analyses take place at large and medium-sized specialized research facilities, so called “neutron sources”, often at research reactors. However, several of these are due to be taken out of service over the next five years.

The Jülich concept is based on the use of the newest technological developments, enabling an accelerator-based production of tightly bundled neutrons. Unlike the situation at reactors, chain reactions do not take place – instead, neutrons are released by colliding accelerated deuterium atoms with metal foil.

The new neutron sources allow neutrons to be used especially efficiently for selected purposes. “For specific scientific questions, it will be possible to achieve results that are not inferior to those obtained at current leading sources, and at around just 30% of the cost,” explained Prof. Thomas Brückel, Director at the JCNS. The bundled neutrons are especially suitable for use in studying small samples such as protein crystals that are often smaller than a cubic millimeter. In this way, for example, the position of lighter elements can be determined, which is often of crucial importance in terms of biological functions.

To begin with, the project’s feasibility will be demonstrated using a prototype. Jülich scientists have already optimized the first components of the HBS using computer simulations and tests on prototypes. The Helmholtz Association has included the project in its “Roadmap for Research Infrastructures 2015” due to its importance for Germany as a centre for research.

“In terms of research with neutrons, Europe leads the way world-wide, thanks to its network of neutron sources. Even the future European Spallation Source (ESS) currently being developed in Lund, Sweden, as the most powerful accelerator-based neutron source in the world cannot fill the gaps created by the decommissioning of the research reactors,” explained Brückel. “In order to carry out certain types of scientific experiments, acquire users, train junior researchers and develop new methods, we still need a European network of neutron sources.”

The Jülich Centre for Neutron Science

Since its establishment in 2006, the Jülich Centre for Neutron Science has been successful in its strategy, unique in neutron research, of offering its users outstanding instruments at leading international neutron sources, and combining this with an excellent scientific environment for selected research areas. JCNS is involved in operating five instruments at the Institut Laue-Langevin in Grenoble, France, the most powerful neutron source in the world. Under the umbrella of the Heinz Maier-Leibnitz Zentrum, at the most powerful German research neutron source in Garching near Munich, JCNS is currently operating eleven neutron instruments, together with partner institutions; two further instruments are under construction. At the Spallation Neutron Source in Oak Ridge, USA, a Jülich neutron spectrometer is the only non-American measuring instrument enabling German and European researchers to gain valuable experience for the construction and operation of instruments for the ESS. Forschungszentrum Jülich has sold three instruments to the China Advanced Research Reactor near Beijing; German researchers are also free to use the instruments there.

Images:

The Jülich project team aims to implement an extremely compact neutron source using accelerators with relatively low final energy through the newest technological developments relating to target, moderators, beam extraction, beam guidance and neutron optics. Optimized for specific types of studies, for instance on small samples, it is set to ideally complement the larger, international facilities.
Copyright: Forschungszentrum Jülich

Prof. Thomas Brückel (left), Director at the JCNS, presented the concept of the high-brilliance neutron source at the tenth anniversary celebrations of the institute. Other speakers were (from left to right): Prof. Dr. Ghaleb Natour, Director at the ZEA, Prof. Dr. Helmut Schober, ILL, Prof. Dr. Dieter Richter, JCNS, Prof. Dr. Sebastian Schmidt, Member of the Jülich Board of Directors, and Prof. Dr. Richard Wagner, former Member of the Jülich Board of Directors.
Copyright: Forschungszentrum Jülich

Original publication:

The Jülich high-brilliance neutron source project;
U. Rücker, T. Cronert, J. Voigt, J.P. Dabruck, P.-E. Doege, J. Ulrich, R. Nabbi, Y. Bessler, M. Butzek, M. Büscher, C. Lange, M. Klaus, T. Gutberlet and T. Brückel;
Eur. Phys. J. Plus (2016) 131: 19;
DOI 10.1140/epjp/i2016-16019-5

Contact:

Prof. Thomas Brückel, Director at the Jülich Centre for Neutron Science und Peter Grünberg Institute – Division “Scattering Methods” (JCNS-2/PGI-4), Forschungszentrum Jülich, Tel. +49 24 61 61-4750, Email: t.brueckel@fz-juelich.de

Press contact:

Angela Wenzik, Science Journalist, Forschungszentrum Jülich,
Tel. +49 24 61 61-6048, Email: a.wenzik@fz-juelich.de

Weitere Informationen:

http://www.fz-juelich.de/portal/EN/ - Forschungszentrum Jülich
http://www.fz-juelich.de/jcns/EN/ - Jülich Centre for Neutron Science
http://www.fz-juelich.de/jcns/EN/Leistungen/High-Brilliance-Neutron-Source/_node... - “The High-Brilliance Neutron Source Project”
http://www.fz-juelich.de/ics/ics-1/EN/UeberUns/JCNSHistory/_node.html - A brief history of JCNS

Dipl.-Biologin Annette Stettien | Forschungszentrum Jülich

Further reports about: Forschungszentrum Jülich Neutron Neutron Science

More articles from Physics and Astronomy:

nachricht DGIST develops 20 times faster biosensor
24.04.2017 | DGIST (Daegu Gyeongbuk Institute of Science and Technology)

nachricht New quantum liquid crystals may play role in future of computers
21.04.2017 | California Institute of Technology

All articles from Physics and Astronomy >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Making lightweight construction suitable for series production

More and more automobile companies are focusing on body parts made of carbon fiber reinforced plastics (CFRP). However, manufacturing and repair costs must be further reduced in order to make CFRP more economical in use. Together with the Volkswagen AG and five other partners in the project HolQueSt 3D, the Laser Zentrum Hannover e.V. (LZH) has developed laser processes for the automatic trimming, drilling and repair of three-dimensional components.

Automated manufacturing processes are the basis for ultimately establishing the series production of CFRP components. In the project HolQueSt 3D, the LZH has...

Im Focus: Wonder material? Novel nanotube structure strengthens thin films for flexible electronics

Reflecting the structure of composites found in nature and the ancient world, researchers at the University of Illinois at Urbana-Champaign have synthesized thin carbon nanotube (CNT) textiles that exhibit both high electrical conductivity and a level of toughness that is about fifty times higher than copper films, currently used in electronics.

"The structural robustness of thin metal films has significant importance for the reliable operation of smart skin and flexible electronics including...

Im Focus: Deep inside Galaxy M87

The nearby, giant radio galaxy M87 hosts a supermassive black hole (BH) and is well-known for its bright jet dominating the spectrum over ten orders of magnitude in frequency. Due to its proximity, jet prominence, and the large black hole mass, M87 is the best laboratory for investigating the formation, acceleration, and collimation of relativistic jets. A research team led by Silke Britzen from the Max Planck Institute for Radio Astronomy in Bonn, Germany, has found strong indication for turbulent processes connecting the accretion disk and the jet of that galaxy providing insights into the longstanding problem of the origin of astrophysical jets.

Supermassive black holes form some of the most enigmatic phenomena in astrophysics. Their enormous energy output is supposed to be generated by the...

Im Focus: A Quantum Low Pass for Photons

Physicists in Garching observe novel quantum effect that limits the number of emitted photons.

The probability to find a certain number of photons inside a laser pulse usually corresponds to a classical distribution of independent events, the so-called...

Im Focus: Microprocessors based on a layer of just three atoms

Microprocessors based on atomically thin materials hold the promise of the evolution of traditional processors as well as new applications in the field of flexible electronics. Now, a TU Wien research team led by Thomas Müller has made a breakthrough in this field as part of an ongoing research project.

Two-dimensional materials, or 2D materials for short, are extremely versatile, although – or often more precisely because – they are made up of just one or a...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Expert meeting “Health Business Connect” will connect international medical technology companies

20.04.2017 | Event News

Wenn der Computer das Gehirn austrickst

18.04.2017 | Event News

7th International Conference on Crystalline Silicon Photovoltaics in Freiburg on April 3-5, 2017

03.04.2017 | Event News

 
Latest News

DGIST develops 20 times faster biosensor

24.04.2017 | Physics and Astronomy

Nanoimprinted hyperlens array: Paving the way for practical super-resolution imaging

24.04.2017 | Materials Sciences

Atomic-level motion may drive bacteria's ability to evade immune system defenses

24.04.2017 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>