Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Flexing fingers for micro-robotics: Berkeley Lab scientists create a powerful, microscale actuator

17.12.2012
Researchers with the U.S. Department of Energy (DOE)'s Lawrence Berkeley National Laboratory (Berkeley Lab) and the University of California, Berkeley, have developed an elegant and powerful new microscale actuator that can flex like a tiny beckoning finger.

Based on an oxide material that expands and contracts dramatically in response to a small temperature variation, the actuators are smaller than the width of a human hair and are promising for microfluidics, drug delivery, and artificial muscles.

"We believe our microactuator is more efficient and powerful than any current microscale actuation technology, including human muscle cells," says Berkeley Lab and UC Berkeley scientist Junqiao Wu. "What's more, it uses this very interesting material—vanadium dioxide—and tells us more about the fundamental materials science of phase transitions."

Wu is corresponding author of a paper appearing in Nano Letters this month that reports these findings, titled "Giant-Amplitude, High-Work Density Microactuators with Phase Transition Activated Nanolayer Bimorphs." As often happens in science, Wu and his colleagues arrived at the microactuator idea by accident, while studying a different problem.

Vanadium dioxide is a textbook example of a strongly correlated material, meaning the behavior of each electron is inextricably tied to its neighboring electrons. The resulting exotic electronic behaviors have made vanadium dioxide an object of scientific scrutiny for decades, much of it focused on an unusual pair of phase transitions.

When heated past 67 degrees Celsius, vanadium dioxide transforms from an insulator to a metal, accompanied by a structural phase transition that shrinks the material in one dimension while expanding in the other two. For decades, researchers have debated whether one of these phase transitions drives the other or if they are separate phenomena that coincidentally occur at the same temperature.

Wu shed light on this question in earlier work published in Physical Review Letters, in which he and his colleagues isolated the two phase transitions in single-crystal nanowires of vanadium dioxide and demonstrated that they are separable and can be driven independently. The team ran into difficulty with the experiments, however, when the nanowires broke away from their electrode contacts during the structural phase transition.

"At the transition, a 100-micron long wire shrinks by about 1 micron, which can easily break the contact," says Wu, who has a dual appointment as a professor in UC Berkeley's department of Materials Sciences and Engineering. "So we started to ask the question: this is bad, but can we make a good thing out of it? And actuation is the natural application."

To take advantage of the shrinkage, the researchers fabricated a free-standing strip of vanadium dioxide with a chromium metal layer on top. When the strip is heated via a small electrical current or a flash of laser light, the vanadium dioxide contracts and the whole strip bends like a finger.

"The displacement of our microactuator is huge," says Wu, "tens of microns for an actuator length on the same order of magnitude—much bigger than you can get with a piezoelectric device—and simultaneously with very large force. I am very optimistic that this technology will become competitive to piezoelectric technology, and may even replace it."

Piezoelectric actuators are the industry-standard for mechanical actuation on micro scales, but they're complicated to grow, need large voltages for small displacements, and typically involve toxic materials such as lead. "But our device is very simple, the material is non-toxic, and the displacement is much bigger at a much lower driving voltage," says Wu. "You can see it move with an optical microscope! And it works equally well in water, making it suitable for biological and microfluidic applications."

The researchers envision using the microactuators as tiny pumps for drug delivery or as mechanical muscles in micro-scale robots. In those applications, the actuator's exceptionally high work density—the power it can deliver per unit volume—offers a great advantage. Ounce for ounce, the vanadium-dioxide actuators deliver a force three orders of magnitude greater than human muscle. Wu and his colleagues are already partnering with the Berkeley Sensing and Actuation Center to integrate their actuators into devices for applications such as radiation-detection robots for hazardous environments.

The team's next goal is to create a torsion actuator, which is a much more challenging prospect. Wu explains: "Torsion actuators typically involve a complicated design of gears, shafts and/or belts, and so miniaturization is a challenge. But here we see that with just a layer of thin-film we could also make a very simple torsional actuator."

The Nano Letters paper was coauthored by Kai Liu, Chun Cheng, Zhenting Cheng, Kevin Wang, and Ramamoorthy Ramesh. Wu's earlier work on separating phase transitions in vanadium dioxide appears in Physical Review Letters, titled "Decoupling of Structural and Electronic Phase Transitions in VO2," and is coauthored by Zhensheng Tao, Tzong-Ru T. Han, Subhendra D. Mahanti, Phillip M. Duxbury, Fei Yuan, and Chong-Yu Ruan, and Kevin Wang.

For a video of this work: http://www.youtube.com/watch?v=aXyTN_lyVF8

"Giant-Amplitude, High-Work Density Microactuators with Phase Transition Activated Nanolayer Bimorphs"

"Decoupling of Structural and Electronic Phase Transitions in VO2"
This research was supported in part by the DOE Office of Science; theory and synthesis research was supported by the National Science Foundation.

Lawrence Berkeley National Laboratory addresses the world's most urgent scientific challenges by advancing sustainable energy, protecting human health, creating new materials, and revealing the origin and fate of the universe. Founded in 1931, Berkeley Lab's scientific expertise has been recognized with 13 Nobel prizes. The University of California manages Berkeley Lab for the U.S. Department of Energy's Office of Science. For more, visit www.lbl.gov.

DOE's Office of Science is the single largest supporter of basic research in the physical sciences in the United States, and is working to address some of the most pressing challenges of our time. For more information, please visit the Office of Science website at http://science.energy.gov .

More information about Junqiao Wu's research can be found at http://www.mse.berkeley.edu/~jwu

Alison Hatt | EurekAlert!
Further information:
http://www.lbl.gov
http://science.energy.gov

More articles from Physics and Astronomy:

nachricht Tiny Drops of Early Universe 'Perfect' Fluid
02.09.2015 | Brookhaven National Laboratory

nachricht Cosmic recycling
02.09.2015 | European Southern Observatory ESO

All articles from Physics and Astronomy >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Fraunhofer ISE Develops Highly Compact Inverter for Uninterruptible Power Supplies

Silicon Carbide Components Enable Efficiency of 98.7 percent

Researchers at the Fraunhofer Institute for Solar Energy Systems ISE have developed a highly compact and efficient inverter for use in uninterruptible power...

Im Focus: How wind sculpted Earth's largest dust deposit

China's Loess Plateau was formed by wind alternately depositing dust or removing dust over the last 2.6 million years, according to a new report from University of Arizona geoscientists. The study is the first to explain how the steep-fronted plateau formed.

China's Loess Plateau was formed by wind alternately depositing dust or removing dust over the last 2.6 million years, according to a new report from...

Im Focus: An engineered surface unsticks sticky water droplets

The leaves of the lotus flower, and other natural surfaces that repel water and dirt, have been the model for many types of engineered liquid-repelling surfaces. As slippery as these surfaces are, however, tiny water droplets still stick to them. Now, Penn State researchers have developed nano/micro-textured, highly slippery surfaces able to outperform these naturally inspired coatings, particularly when the water is a vapor or tiny droplets.

Enhancing the mobility of liquid droplets on rough surfaces could improve condensation heat transfer for power-plant heat exchangers, create more efficient...

Im Focus: Increasingly severe disturbances weaken world's temperate forests

Longer, more severe, and hotter droughts and a myriad of other threats, including diseases and more extensive and severe wildfires, are threatening to transform some of the world's temperate forests, a new study published in Science has found. Without informed management, some forests could convert to shrublands or grasslands within the coming decades.

"While we have been trying to manage for resilience of 20th century conditions, we realize now that we must prepare for transformations and attempt to ease...

Im Focus: OU astrophysicist and collaborators find supermassive black holes in quasar nearest Earth

A University of Oklahoma astrophysicist and his Chinese collaborator have found two supermassive black holes in Markarian 231, the nearest quasar to Earth, using observations from NASA's Hubble Space Telescope.

The discovery of two supermassive black holes--one larger one and a second, smaller one--are evidence of a binary black hole and suggests that supermassive...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Together - Work - Experience

03.09.2015 | Event News

Networking conference in Heidelberg for outstanding mathematicians and computer scientists

20.08.2015 | Event News

Scientists meet in Münster for the world’s largest Chitin und Chitosan Conference

20.08.2015 | Event News

 
Latest News

Lighter with Laser Welding

03.09.2015 | Process Engineering

For 2-D boron, it's all about that base

03.09.2015 | Materials Sciences

Phagraphene, a 'relative' of graphene, discovered

03.09.2015 | Materials Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>