Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Flexible Electronics Could Help Put Off-Beat Hearts Back On Rhythm

26.03.2010
Arrhythmic hearts soon may beat in time again, with minimal surgical invasion, thanks to flexible electronics technology developed by a team of University of Illinois researchers, in collaboration with the University of Pennsylvania School of Medicine and Northwestern University. These biocompatible silicon devices could mark the beginning of a new wave of surgical electronics.

Co-senior author John Rogers, the Lee J. Flory-Founder Chair in Engineering Innovation and a professor of materials science and engineering at Illinois, and his team will publish their breakthrough in the cover story of the March 24 issue of Science Translational Medicine.

Several treatments are available for hearts that dance to their own tempo, ranging from pacemaker implants to cardiac ablation therapy, a process that selectively targets and destroys clusters of arrhythmic cells. Current techniques require multiple electrodes placed on the tissue in a time-consuming, point-by-point process to construct a patchwork cardiac map. In addition, the difficulty of connecting rigid, flat sensors to soft, curved tissue impedes the electrodes’ ability to monitor and stimulate the heart.

Rogers and his team have built a flexible sensor array that can wrap around the heart to map large areas of tissue at once. The array contains 2,016 silicon nanomembrane transistors, each monitoring electricity coursing through a beating heart.

The Pennsylvania team demonstrated the transistor array on the beating hearts of live pigs, a common model for human hearts. They witnessed a high-resolution, real-time display of the pigs’ pulsing cardiac tissues – something never before possible.

“We believe that this technology may herald a new generation of devices for localizing and treating abnormal heart rhythms,” said co-sernior author Brian Litt, of the University of Pennsylvania.

“This allows us to apply the full power of silicon electronics directly to the tissue,” said Rogers, a renowned researcher in the area of flexible, stretchable electronics. As the first class of flexible electronics that can directly integrate with bodily tissues, “these approaches might have the potential to redefine design strategies for advanced surgical devices, implants, prosthetics and more,” he said.

The biocompatible circuits – the first ones unperturbed by immersion in the body’s salty fluids – represent a culmination of seven years of flexible electronics study by Rogers’ group. The researchers build circuits from ultrathin, single-crystal silicon on a flexible or stretchy substrate, like a sheet of plastic or rubber. The nanometer thinness of the silicon layer makes it possible to bend and fold the normally rigid semiconductor.

“If you can create a circuit that’s compliant and bendable, you can integrate it very effectively with soft surfaces in the body,” such as the irregular, constantly moving curves of the heart, Rogers said.

Collaborations with a theoretical mechanics group at Northwestern University, led by Younggang Huang, yielded important insights into the designs.

The patchwork grid of cardiac sensors adheres to the moist surfaces of the heart on its own, with no need for probes or adhesives, and lifts off easily. The array of hundreds of sensors gives cardiac surgeons a more complete picture of the heart’s electrical activity so they can quickly find and fix any short circuits. In fact, the cardiac device boasts the highest transistor resolution of any class of flexible electronics for non-display applications.

The team’s next step is to adapt the technology for use with non-invasive catheter procedures, Rogers said. The U. of I. and Pennsylvania teams also are exploring applications for the arrays in neuroscience, applying grids to brain surfaces to study conditions of unusual electrical activity, such as epilepsy.

“It sets out a new design paradigm for interfacing electronics to the human body, with a multitude of possible applications in human health,” Rogers said.

This work was supported by the U.S. Department of Energy, a National Security Science and Engineering Faculty Fellowship, the National Institutes of Health and the Klingenstein Foundation.

Editor’s note: To contact John Rogers, call 217-244-4979; e-mail jrogers@illinois.edu

Liz Ahlberg | University of Illinois
Further information:
http://www.illinois.edu

More articles from Physics and Astronomy:

nachricht Researchers create artificial materials atom-by-atom
28.03.2017 | Aalto University

nachricht Astronomers probe swirling particles in halo of starburst galaxy
28.03.2017 | International Centre for Radio Astronomy Research

All articles from Physics and Astronomy >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: A Challenging European Research Project to Develop New Tiny Microscopes

The Institute of Semiconductor Technology and the Institute of Physical and Theoretical Chemistry, both members of the Laboratory for Emerging Nanometrology (LENA), at Technische Universität Braunschweig are partners in a new European research project entitled ChipScope, which aims to develop a completely new and extremely small optical microscope capable of observing the interior of living cells in real time. A consortium of 7 partners from 5 countries will tackle this issue with very ambitious objectives during a four-year research program.

To demonstrate the usefulness of this new scientific tool, at the end of the project the developed chip-sized microscope will be used to observe in real-time...

Im Focus: Giant Magnetic Fields in the Universe

Astronomers from Bonn and Tautenburg in Thuringia (Germany) used the 100-m radio telescope at Effelsberg to observe several galaxy clusters. At the edges of these large accumulations of dark matter, stellar systems (galaxies), hot gas, and charged particles, they found magnetic fields that are exceptionally ordered over distances of many million light years. This makes them the most extended magnetic fields in the universe known so far.

The results will be published on March 22 in the journal „Astronomy & Astrophysics“.

Galaxy clusters are the largest gravitationally bound structures in the universe. With a typical extent of about 10 million light years, i.e. 100 times the...

Im Focus: Tracing down linear ubiquitination

Researchers at the Goethe University Frankfurt, together with partners from the University of Tübingen in Germany and Queen Mary University as well as Francis Crick Institute from London (UK) have developed a novel technology to decipher the secret ubiquitin code.

Ubiquitin is a small protein that can be linked to other cellular proteins, thereby controlling and modulating their functions. The attachment occurs in many...

Im Focus: Perovskite edges can be tuned for optoelectronic performance

Layered 2D material improves efficiency for solar cells and LEDs

In the eternal search for next generation high-efficiency solar cells and LEDs, scientists at Los Alamos National Laboratory and their partners are creating...

Im Focus: Polymer-coated silicon nanosheets as alternative to graphene: A perfect team for nanoelectronics

Silicon nanosheets are thin, two-dimensional layers with exceptional optoelectronic properties very similar to those of graphene. Albeit, the nanosheets are less stable. Now researchers at the Technical University of Munich (TUM) have, for the first time ever, produced a composite material combining silicon nanosheets and a polymer that is both UV-resistant and easy to process. This brings the scientists a significant step closer to industrial applications like flexible displays and photosensors.

Silicon nanosheets are thin, two-dimensional layers with exceptional optoelectronic properties very similar to those of graphene. Albeit, the nanosheets are...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

International Land Use Symposium ILUS 2017: Call for Abstracts and Registration open

20.03.2017 | Event News

CONNECT 2017: International congress on connective tissue

14.03.2017 | Event News

ICTM Conference: Turbine Construction between Big Data and Additive Manufacturing

07.03.2017 | Event News

 
Latest News

Chlamydia: How bacteria take over control

28.03.2017 | Life Sciences

A Challenging European Research Project to Develop New Tiny Microscopes

28.03.2017 | Medical Engineering

Northern oceans pumped CO2 into the atmosphere

27.03.2017 | Earth Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>