Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Flexi display technology is now

02.10.2008
Rigid television screens, bulky laptops and still image posters are to be a thing of the past as new research, published today, Thursday, 2 October, in the New Journal of Physics, heralds the beginning of a technological revolution for screen displays.

Screen display technology is taking a significant step forward as researchers from Sony and the Max Planck Institute demonstrate the possibility of bendable optically assessed organic light emitting displays for the first time, based on red or IR-A light upconversion.

The paper, ‘Annihilation Assisted Upconversion: All-Organic, Flexible and Transparent Multicolour Display’, makes feasible the design of computers that can be folded up and put in your pocket, the mass-production of moving image posters for display advertising, televisions which can be bended to view or, even, newspaper display technology which allows readers to upload daily news to an easy-to-carry display contraption.

All organic, upconversion multicolour displays have significant advantages when compared to the traditional technology used for projection displays and televisions. Namely UC displays are:

•All-organic - transparent and flexible
•Ultra low excitation intensity (red or IR)– less than 15 mWcm-2
•Emissive display – no speckles
•Coherent or non-coherent excitation allowed
•High efficiency – at the moment ca. 6 %
•Fast response times – ca. 1 µs up to 500 µs on request (LCDs have ms)
•Almost unlimited viewing angle – up to the total internal reflection angle
•Tailoring of emitted colours realised even when using the same excitation source
•Multilayer Displays
•Size limited only by the size of the substrates
With LCD-based projection displays, the liquid crystal acts as a filter for the light being shone through so when coherent excitation is used (e.g. laser diodes) the problems with speckles are serious. For this organic emissive UC displays, the organic molecules themselves emit non-coherent light in 4ð (all directions) to produce an image.

Sony announced the development of flexible OLED display screens in 2006 but glitches such as size and resolution limitations, and the difficulty of structuring the organic compounds so as not to be distorted when bent, have stopped designs coming to market. This new technology for optically excited organic emissive displays hasn’t got this problem and gives further opportunities for new applications.

The research published today concludes through the use of a new structure and unique combinations for the organic compounds within viscous polymeric matrix, that there need be no size or resolution limitations for the new screens.

The researchers conclude, “To the best of our knowledge we demonstrate for the first time a versatile colour all-organic and transparent UC-display. The reported displays are also flexible and have excellent brightness.”

There is a small film of a prototype screen in action available.

Joseph Winters | alfa
Further information:
http://www.iop.org
http://stacks.iop.org/NJP/10/103002

More articles from Physics and Astronomy:

nachricht First Juno science results supported by University of Leicester's Jupiter 'forecast'
26.05.2017 | University of Leicester

nachricht Measured for the first time: Direction of light waves changed by quantum effect
24.05.2017 | Vienna University of Technology

All articles from Physics and Astronomy >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Can the immune system be boosted against Staphylococcus aureus by delivery of messenger RNA?

Staphylococcus aureus is a feared pathogen (MRSA, multi-resistant S. aureus) due to frequent resistances against many antibiotics, especially in hospital infections. Researchers at the Paul-Ehrlich-Institut have identified immunological processes that prevent a successful immune response directed against the pathogenic agent. The delivery of bacterial proteins with RNA adjuvant or messenger RNA (mRNA) into immune cells allows the re-direction of the immune response towards an active defense against S. aureus. This could be of significant importance for the development of an effective vaccine. PLOS Pathogens has published these research results online on 25 May 2017.

Staphylococcus aureus (S. aureus) is a bacterium that colonizes by far more than half of the skin and the mucosa of adults, usually without causing infections....

Im Focus: A quantum walk of photons

Physicists from the University of Würzburg are capable of generating identical looking single light particles at the push of a button. Two new studies now demonstrate the potential this method holds.

The quantum computer has fuelled the imagination of scientists for decades: It is based on fundamentally different phenomena than a conventional computer....

Im Focus: Turmoil in sluggish electrons’ existence

An international team of physicists has monitored the scattering behaviour of electrons in a non-conducting material in real-time. Their insights could be beneficial for radiotherapy.

We can refer to electrons in non-conducting materials as ‘sluggish’. Typically, they remain fixed in a location, deep inside an atomic composite. It is hence...

Im Focus: Wafer-thin Magnetic Materials Developed for Future Quantum Technologies

Two-dimensional magnetic structures are regarded as a promising material for new types of data storage, since the magnetic properties of individual molecular building blocks can be investigated and modified. For the first time, researchers have now produced a wafer-thin ferrimagnet, in which molecules with different magnetic centers arrange themselves on a gold surface to form a checkerboard pattern. Scientists at the Swiss Nanoscience Institute at the University of Basel and the Paul Scherrer Institute published their findings in the journal Nature Communications.

Ferrimagnets are composed of two centers which are magnetized at different strengths and point in opposing directions. Two-dimensional, quasi-flat ferrimagnets...

Im Focus: World's thinnest hologram paves path to new 3-D world

Nano-hologram paves way for integration of 3-D holography into everyday electronics

An Australian-Chinese research team has created the world's thinnest hologram, paving the way towards the integration of 3D holography into everyday...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Marine Conservation: IASS Contributes to UN Ocean Conference in New York on 5-9 June

24.05.2017 | Event News

AWK Aachen Machine Tool Colloquium 2017: Internet of Production for Agile Enterprises

23.05.2017 | Event News

Dortmund MST Conference presents Individualized Healthcare Solutions with micro and nanotechnology

22.05.2017 | Event News

 
Latest News

How herpesviruses win the footrace against the immune system

26.05.2017 | Life Sciences

Water forms 'spine of hydration' around DNA, group finds

26.05.2017 | Life Sciences

First Juno science results supported by University of Leicester's Jupiter 'forecast'

26.05.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>