Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Flexi display technology is now

02.10.2008
Rigid television screens, bulky laptops and still image posters are to be a thing of the past as new research, published today, Thursday, 2 October, in the New Journal of Physics, heralds the beginning of a technological revolution for screen displays.

Screen display technology is taking a significant step forward as researchers from Sony and the Max Planck Institute demonstrate the possibility of bendable optically assessed organic light emitting displays for the first time, based on red or IR-A light upconversion.

The paper, ‘Annihilation Assisted Upconversion: All-Organic, Flexible and Transparent Multicolour Display’, makes feasible the design of computers that can be folded up and put in your pocket, the mass-production of moving image posters for display advertising, televisions which can be bended to view or, even, newspaper display technology which allows readers to upload daily news to an easy-to-carry display contraption.

All organic, upconversion multicolour displays have significant advantages when compared to the traditional technology used for projection displays and televisions. Namely UC displays are:

•All-organic - transparent and flexible
•Ultra low excitation intensity (red or IR)– less than 15 mWcm-2
•Emissive display – no speckles
•Coherent or non-coherent excitation allowed
•High efficiency – at the moment ca. 6 %
•Fast response times – ca. 1 µs up to 500 µs on request (LCDs have ms)
•Almost unlimited viewing angle – up to the total internal reflection angle
•Tailoring of emitted colours realised even when using the same excitation source
•Multilayer Displays
•Size limited only by the size of the substrates
With LCD-based projection displays, the liquid crystal acts as a filter for the light being shone through so when coherent excitation is used (e.g. laser diodes) the problems with speckles are serious. For this organic emissive UC displays, the organic molecules themselves emit non-coherent light in 4ð (all directions) to produce an image.

Sony announced the development of flexible OLED display screens in 2006 but glitches such as size and resolution limitations, and the difficulty of structuring the organic compounds so as not to be distorted when bent, have stopped designs coming to market. This new technology for optically excited organic emissive displays hasn’t got this problem and gives further opportunities for new applications.

The research published today concludes through the use of a new structure and unique combinations for the organic compounds within viscous polymeric matrix, that there need be no size or resolution limitations for the new screens.

The researchers conclude, “To the best of our knowledge we demonstrate for the first time a versatile colour all-organic and transparent UC-display. The reported displays are also flexible and have excellent brightness.”

There is a small film of a prototype screen in action available.

Joseph Winters | alfa
Further information:
http://www.iop.org
http://stacks.iop.org/NJP/10/103002

More articles from Physics and Astronomy:

nachricht Physicists Design Ultrafocused Pulses
27.07.2017 | Universität Innsbruck

nachricht CCNY physicists master unexplored electron property
26.07.2017 | City College of New York

All articles from Physics and Astronomy >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Physicists Design Ultrafocused Pulses

Physicists working with researcher Oriol Romero-Isart devised a new simple scheme to theoretically generate arbitrarily short and focused electromagnetic fields. This new tool could be used for precise sensing and in microscopy.

Microwaves, heat radiation, light and X-radiation are examples for electromagnetic waves. Many applications require to focus the electromagnetic fields to...

Im Focus: Carbon Nanotubes Turn Electrical Current into Light-emitting Quasi-particles

Strong light-matter coupling in these semiconducting tubes may hold the key to electrically pumped lasers

Light-matter quasi-particles can be generated electrically in semiconducting carbon nanotubes. Material scientists and physicists from Heidelberg University...

Im Focus: Flexible proximity sensor creates smart surfaces

Fraunhofer IPA has developed a proximity sensor made from silicone and carbon nanotubes (CNT) which detects objects and determines their position. The materials and printing process used mean that the sensor is extremely flexible, economical and can be used for large surfaces. Industry and research partners can use and further develop this innovation straight away.

At first glance, the proximity sensor appears to be nothing special: a thin, elastic layer of silicone onto which black square surfaces are printed, but these...

Im Focus: 3-D scanning with water

3-D shape acquisition using water displacement as the shape sensor for the reconstruction of complex objects

A global team of computer scientists and engineers have developed an innovative technique that more completely reconstructs challenging 3D objects. An ancient...

Im Focus: Manipulating Electron Spins Without Loss of Information

Physicists have developed a new technique that uses electrical voltages to control the electron spin on a chip. The newly-developed method provides protection from spin decay, meaning that the contained information can be maintained and transmitted over comparatively large distances, as has been demonstrated by a team from the University of Basel’s Department of Physics and the Swiss Nanoscience Institute. The results have been published in Physical Review X.

For several years, researchers have been trying to use the spin of an electron to store and transmit information. The spin of each electron is always coupled...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Clash of Realities 2017: Registration now open. International Conference at TH Köln

26.07.2017 | Event News

Closing the Sustainability Circle: Protection of Food with Biobased Materials

21.07.2017 | Event News

»We are bringing Additive Manufacturing to SMEs«

19.07.2017 | Event News

 
Latest News

Programming cells with computer-like logic

27.07.2017 | Life Sciences

Identified the component that allows a lethal bacteria to spread resistance to antibiotics

27.07.2017 | Life Sciences

Malaria Already Endemic in the Mediterranean by the Roman Period

27.07.2017 | Health and Medicine

VideoLinks
B2B-VideoLinks
More VideoLinks >>>