Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

“Flawed” Diamonds Could Speed Quantum Computing

13.10.2011
Summary:
-- Diamonds with defects known as "nitrogen-vacancy centers" can be used in applications including quantum information processing.
-- One problem preventing scientists from fully understanding these defective diamonds is that at the point of defect, the high-symmetry energy configuration of the defect becomes unstable when an electron is promoted to an excited state. This is known as the Jahn-Teller effect.
-- Now, for the first time, researchers led by the University at Buffalo have conducted calculations revealing how the diamond lattice stabilizes itself at the point of defect by changing its shape, providing new information on the consequence of such dynamical distortion.

A University at Buffalo-led research team has established the presence of a dynamic Jahn-Teller effect in defective diamonds, a finding that will help advance the development of diamond-based systems in applications such as quantum information processing.

“We normally want things to be perfect, but defects are actually very important in terms of electronic applications,” said Peihong Zhang, the UB associate professor of physics who led the study. “There are many proposals for the application of defective diamonds, ranging from quantum computing to biological imaging, and our research is one step toward a better understanding of these defect systems.”

The research was published online Sept. 30 in Physical Review Letters: http://www.buffalo.edu/news/pdf/October11/jahn-teller-effect.pdf.

The findings deal with diamonds whose crystal structure contains a particular defect: a nitrogen atom that sits alongside a vacant space in an otherwise perfect lattice made only of carbon.

At the point of the imperfection -- the so-called “nitrogen-vacancy center” -- a single electron can jump between different energy states. (The electron rises to a higher, "excited" energy state when it absorbs a photon and falls back to a lower energy state when it emits a photon).

Understanding how the diamond system behaves when the electron rises to an excited state called a “3E" state is critical to the success of such proposed applications as quantum computing.

The problem is that at the nitrogen-vacancy center, the 3E state has two orbital components with exactly the same energy -- a configuration that is inherently unstable.

In response, the lattice “stabilizes” by rearranging itself. Atoms near the nitrogen-vacancy center move slightly, resulting in a new geometry that has a lower energy and is more stable.

This morphing is known as the Jahn-Teller effect, and until recently, the effect’s precise parameters in defective diamonds remained unknown.

Zhang and colleagues from the Rensselaer Polytechnic Institute in Troy, N.Y., are the first to crack that mystery. Using UB’s supercomputing facility, the Center for Computational Research, the team conducted calculations that reveal how, exactly, the diamond lattice distorts.

Their findings align with experimental results from other research studies, and shed light on important topics such as how long an excited electron at the nitrogen-vacancy center will stay coherently at a higher energy state.

The UB-Rensselaer study was funded by the Department of Energy.

The University at Buffalo is a premier research-intensive public university, a flagship institution in the State University of New York system and its largest and most comprehensive campus. UB's more than 28,000 students pursue their academic interests through more than 300 undergraduate, graduate and professional degree programs. Founded in 1846, the University at Buffalo is a member of the Association of American Universities.

Related Stories:
Physicist Peihong Zhang Among Three UB Researchers to Receive New NSF CAREER Awards: http://www.buffalo.edu/news/12218

Charlotte Hsu | Newswise Science News
Further information:
http://www.buffalo.edu

More articles from Physics and Astronomy:

nachricht Tiny lasers from a gallery of whispers
20.09.2017 | American Institute of Physics

nachricht New quantum phenomena in graphene superlattices
19.09.2017 | Graphene Flagship

All articles from Physics and Astronomy >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Tiny lasers from a gallery of whispers

New technique promises tunable laser devices

Whispering gallery mode (WGM) resonators are used to make tiny micro-lasers, sensors, switches, routers and other devices. These tiny structures rely on a...

Im Focus: Ultrafast snapshots of relaxing electrons in solids

Using ultrafast flashes of laser and x-ray radiation, scientists at the Max Planck Institute of Quantum Optics (Garching, Germany) took snapshots of the briefest electron motion inside a solid material to date. The electron motion lasted only 750 billionths of the billionth of a second before it fainted, setting a new record of human capability to capture ultrafast processes inside solids!

When x-rays shine onto solid materials or large molecules, an electron is pushed away from its original place near the nucleus of the atom, leaving a hole...

Im Focus: Quantum Sensors Decipher Magnetic Ordering in a New Semiconducting Material

For the first time, physicists have successfully imaged spiral magnetic ordering in a multiferroic material. These materials are considered highly promising candidates for future data storage media. The researchers were able to prove their findings using unique quantum sensors that were developed at Basel University and that can analyze electromagnetic fields on the nanometer scale. The results – obtained by scientists from the University of Basel’s Department of Physics, the Swiss Nanoscience Institute, the University of Montpellier and several laboratories from University Paris-Saclay – were recently published in the journal Nature.

Multiferroics are materials that simultaneously react to electric and magnetic fields. These two properties are rarely found together, and their combined...

Im Focus: Fast, convenient & standardized: New lab innovation for automated tissue engineering & drug

MBM ScienceBridge GmbH successfully negotiated a license agreement between University Medical Center Göttingen (UMG) and the biotech company Tissue Systems Holding GmbH about commercial use of a multi-well tissue plate for automated and reliable tissue engineering & drug testing.

MBM ScienceBridge GmbH successfully negotiated a license agreement between University Medical Center Göttingen (UMG) and the biotech company Tissue Systems...

Im Focus: Silencing bacteria

HZI researchers pave the way for new agents that render hospital pathogens mute

Pathogenic bacteria are becoming resistant to common antibiotics to an ever increasing degree. One of the most difficult germs is Pseudomonas aeruginosa, a...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

“Lasers in Composites Symposium” in Aachen – from Science to Application

19.09.2017 | Event News

I-ESA 2018 – Call for Papers

12.09.2017 | Event News

EMBO at Basel Life, a new conference on current and emerging life science research

06.09.2017 | Event News

 
Latest News

Molecular Force Sensors

20.09.2017 | Life Sciences

Producing electricity during flight

20.09.2017 | Power and Electrical Engineering

Tiny lasers from a gallery of whispers

20.09.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>