Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Flashes of light out of the mirror

11.06.2012
A team of the Laboratory of Attosecond physics at the Max Planck Institute of Quantum Optics developed an alternative way of generating attosecond flashes of light.

Electrons at a glass surface send out flashes of light with durations of only a few attoseconds when they come under the influence of high-intensity laser pulses. One attosecond is one part in a billion of one part in a billion of a second. In the electric field of the laser, the electrons at the surface start to oscillate. Hereby the ultrashort attosecond flashes of light are generated.


Attosecond flashes of light can be generated on a glass surface under the influence of strong laserpulses. Every laserpulse hitting the surface leaves a punctual imprint on the glass surface and produces attosecond flashes of light. Photo: Thorsten Naeser

The team at the Laboratory of Attosecond Physics (LAP) at the Max Planck Institute of Quantum Optics (MPQ) in Garching has now advanced this innovative method. It has the potential to replace the current procedure of the generation of attosecond flashes of light. Presently these flashes are generated by electrons in noble gases. But the scientists are sure, that their method of the generation of attosecond flashes of light at surfaces has some advantages (Physcial Review Letters, Phys. Rev. Lett. 108, 235003 (2012).

Flashes of light with attosecond duration enable observations in a world yet widely unknown – the microcosm. With their help the first images of the extremely fast motion of electrons became possible. The short bursts of light are usually generated by the use of noble gas atoms. The electrons of these atoms absorb the energy of the laser light and subsequently emit it again in the form of ultrashort flashes of light. It holds: The shorter the burst of light, the sharper the images out of the microcosm.

But there are other ways of generating these short bursts of light. A team at the Laboratory of Attosecond Physics (LAP) at the Max Planck Institute of Quantum Optics (MPQ) in Garching has now advanced one of these methods. The scientists shot a laser pulse with a duration of only 8 femtoseconds and a power of 16 terawatts onto a glass target, which thereby turned into a relativistically oscillating mirror. One femtosecond corresponds to one part in a million of one part in a billion of one second and 16 terrawatt correspond to the power of round about 1000 nuclear power stations.
The 8 femtosecond laser pulse consisted of only 3 optical cycles and hence 3 cycles of its electric field. As soon as this electric field hits the glass surface a relativistic plasma forms. This means, that the electrons at the surface are accelerated out of the solid to velocities close to the speed of light and subsequently are decelerated and sent back to the surface again, as soon as the electric field changes its polarization. Thereby the electrons form an oscillating mirror. During the reflection at this moving mirror the pulsed laser light is converted from the near infrared spectral region down to the extreme ultraviolet (XUV, down to a wavelength of 17 nanometer) part of the spectrum. Hereby even shorter flashes of light with a duration in the attosecond regime are generated. These flashes of light occur as isolated bursts or trains of pulses, if filtered appropriately. Comparison with simulations of the method show that the ultrashort flashes of light have durations of around 100 attoseconds.

Compared to the conventional method of attosecond pulse generation these new flashes of light possess a higher number of photons and are hence more intense than their predecessors. This higher intensity allows for the splitting of these isolated bursts into two parts which enables the observation of processes in the microcosm with two attosecond flashes of light. This in turn permits a higher resolution than achievable up to now with the use of an attosecond burst in combination with a longer femtosecond laser pulse.

For ultrashort imaging this means that images with a greater richness of detail will become achievable in the future. [Thorsten Naeser]

Original Publication:
P. Heissler, R. Hörlein, J. M. Mikhailova, L. Waldecker, P. Tzallas, A. Buck, K. Schmid, C. M. S. Sears, F. Krausz, L. Veisz, M. Zepf and G. D. Tsakiris
Few-cycle driven relativistically oscillating plasma mirrors - a source of intense, isolated attosecond pulses
Phys. Rev. Lett. 108, 235003 (2012)

For more information please contact:

Patrick Heissler
Max Planck Institute of Quantum Optics, Garching
Hans-Kopfermann-Str. 1
85748 Garching
Phone: +49 (0) 89 / 32905 -624
E-mail: patrick.heissler@mpq.mpg.de

Prof. Dr. Ferenc Krausz
Max Planck Institute of Quantum Optics, Garching
Phone: +49 (0) 89 / 32905 -612
E-mail: ferenc.krausz@mpq.mpg.de
http://www.attoworld.de

Dr. Olivia Meyer-Streng
Press & Public Relations
Max Planck Institute of Quantum Optics, Garching
Phone: +49 (0) 89 / 32905 -213
E-mail: olivia.meyer-streng@mpq.mpg.de

Dr. Olivia Meyer-Streng | Max-Planck-Institut
Further information:
http://www.mpq.mpg.de
http://www.attoworld.de

More articles from Physics and Astronomy:

nachricht Solar wind impacts on giant 'space hurricanes' may affect satellite safety
19.09.2017 | Embry-Riddle Aeronautical University

nachricht Integrated lasers on different surfaces
19.09.2017 | The Agency for Science, Technology and Research (A*STAR)

All articles from Physics and Astronomy >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Ultrafast snapshots of relaxing electrons in solids

Using ultrafast flashes of laser and x-ray radiation, scientists at the Max Planck Institute of Quantum Optics (Garching, Germany) took snapshots of the briefest electron motion inside a solid material to date. The electron motion lasted only 750 billionths of the billionth of a second before it fainted, setting a new record of human capability to capture ultrafast processes inside solids!

When x-rays shine onto solid materials or large molecules, an electron is pushed away from its original place near the nucleus of the atom, leaving a hole...

Im Focus: Quantum Sensors Decipher Magnetic Ordering in a New Semiconducting Material

For the first time, physicists have successfully imaged spiral magnetic ordering in a multiferroic material. These materials are considered highly promising candidates for future data storage media. The researchers were able to prove their findings using unique quantum sensors that were developed at Basel University and that can analyze electromagnetic fields on the nanometer scale. The results – obtained by scientists from the University of Basel’s Department of Physics, the Swiss Nanoscience Institute, the University of Montpellier and several laboratories from University Paris-Saclay – were recently published in the journal Nature.

Multiferroics are materials that simultaneously react to electric and magnetic fields. These two properties are rarely found together, and their combined...

Im Focus: Fast, convenient & standardized: New lab innovation for automated tissue engineering & drug

MBM ScienceBridge GmbH successfully negotiated a license agreement between University Medical Center Göttingen (UMG) and the biotech company Tissue Systems Holding GmbH about commercial use of a multi-well tissue plate for automated and reliable tissue engineering & drug testing.

MBM ScienceBridge GmbH successfully negotiated a license agreement between University Medical Center Göttingen (UMG) and the biotech company Tissue Systems...

Im Focus: Silencing bacteria

HZI researchers pave the way for new agents that render hospital pathogens mute

Pathogenic bacteria are becoming resistant to common antibiotics to an ever increasing degree. One of the most difficult germs is Pseudomonas aeruginosa, a...

Im Focus: Artificial Enzymes for Hydrogen Conversion

Scientists from the MPI for Chemical Energy Conversion report in the first issue of the new journal JOULE.

Cell Press has just released the first issue of Joule, a new journal dedicated to sustainable energy research. In this issue James Birrell, Olaf Rüdiger,...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

I-ESA 2018 – Call for Papers

12.09.2017 | Event News

EMBO at Basel Life, a new conference on current and emerging life science research

06.09.2017 | Event News

IVAM’s LaserForum visits the Swiss canton of St. Gallen with the topic ultrashort pulse lasers

06.09.2017 | Event News

 
Latest News

Robust and functional – surface finishing by suspension spraying

19.09.2017 | Materials Sciences

The Wadden Sea and the Elbe Studied with Zeppelin, Drones and Research Ships

19.09.2017 | Earth Sciences

Digging sensors out of an efficiency hole

19.09.2017 | Materials Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>