Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

First users at European XFEL

21.09.2017

The first users have now started experiments at the new international research facility in Schenefeld.

“This is a very important event, and we are very happy that the first users have now arrived at European XFEL so we can do a full scale test of the facility” said European XFEL Managing Director Prof. Dr. Robert Feidenhans’l.


DESY's Anton Barty (left) and Henry Chapman (right), seen at the SPB/SFX instrument, were in one of the first two user groups. (Photo: DESY, Lars Berg)

”The instruments and the supporting teams have made great progress in the recent weeks and months. Together with our first users, we will now do the first real commissioning experiments and collect valuable scientific data. At the same time, we will continue to further advance our facility and concentrate on further improving the integration and stability of the instrumentation” he added.

The FXE instrument will enable the research of extremely fast processes. It will be possible to create “molecular movies” showing the progression of chemical reactions which, for example, will help improve our understanding of how catalysts work, or how plants convert light into usable chemical energy.

The first seven experiments conducted at FXE highlight the range of methods available at the instrument and the diversity of topics of study possible.

Experiments will include using different spectroscopy methods to track ultrafast reactions and electron movement in model molecules, probe organic light emitting diodes, or investigate the recombination of nitrogen and oxygen in the muscle tissue protein myoglobin.

The SPB/SFX instrument will be used to gain a better understanding of the shape and function of biomolecules, such as proteins, that are otherwise difficult to study. Several of the seven first experiments at this instrument will focus on method development for these new research opportunities at European XFEL or ways to reduce the amount of precious sample used for the examination of biological processes.

Other groups will be studying biological structures and processes such as the Melbourne virus and the water splitting process in photosynthesis.

In this first round of beamtime a total of 14 groups, of up to 80 users each and travelling to Schenefeld from across the globe, will conduct experiments at European XFEL until March 2018. Each group will have about five days of 12 hours of beamtime.

About European XFEL

The European XFEL, located in the metropolitan Hamburg area, is an international research facility of superlatives: 27,000 X-ray flashes per second and a brilliance that is a billion times higher than that of the best conventional X-ray sources will open up completely new opportunities for science. Research groups from around the world will be able to map the atomic details of viruses, decipher the molecular composition of cells, take three-dimensional “photos” of the nanoworld, “film” chemical reactions, and study processes such as those occurring deep inside planets. The construction and operation of the facility is entrusted to the European XFEL GmbH, a non-profit company that cooperates closely with the research centre DESY and other organisations worldwide. The company has a workforce of over 300 employees. With construction and commissioning costs of 1.22 billion euro (at 2005 price levels) and a total length of 3.4 kilometres, the European XFEL is one of the largest and most ambitious European research projects to date. At present, 11 countries have signed the European XFEL convention: Denmark, France, Germany, Hungary, Italy, Poland, Russia, Slovakia, Spain, Sweden, and Switzerland. The United Kingdom is in the process of joining.

Contact: Dr. Bernd Ebeling, +49 40 8998 6921, bernd.ebeling@xfel.eu

Weitere Informationen:

http://www.xfel.eu/news_and_events/news/index_eng.html?openDirectAnchor=1326&... Press release with pictures to download
http://www.xfel.eu

Dr. Bernd Ebeling | idw - Informationsdienst Wissenschaft

More articles from Physics and Astronomy:

nachricht A better way to weigh millions of solitary stars
15.12.2017 | Vanderbilt University

nachricht A chip for environmental and health monitoring
15.12.2017 | Friedrich-Alexander-Universität Erlangen-Nürnberg

All articles from Physics and Astronomy >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: First-of-its-kind chemical oscillator offers new level of molecular control

DNA molecules that follow specific instructions could offer more precise molecular control of synthetic chemical systems, a discovery that opens the door for engineers to create molecular machines with new and complex behaviors.

Researchers have created chemical amplifiers and a chemical oscillator using a systematic method that has the potential to embed sophisticated circuit...

Im Focus: Long-lived storage of a photonic qubit for worldwide teleportation

MPQ scientists achieve long storage times for photonic quantum bits which break the lower bound for direct teleportation in a global quantum network.

Concerning the development of quantum memories for the realization of global quantum networks, scientists of the Quantum Dynamics Division led by Professor...

Im Focus: Electromagnetic water cloak eliminates drag and wake

Detailed calculations show water cloaks are feasible with today's technology

Researchers have developed a water cloaking concept based on electromagnetic forces that could eliminate an object's wake, greatly reducing its drag while...

Im Focus: Scientists channel graphene to understand filtration and ion transport into cells

Tiny pores at a cell's entryway act as miniature bouncers, letting in some electrically charged atoms--ions--but blocking others. Operating as exquisitely sensitive filters, these "ion channels" play a critical role in biological functions such as muscle contraction and the firing of brain cells.

To rapidly transport the right ions through the cell membrane, the tiny channels rely on a complex interplay between the ions and surrounding molecules,...

Im Focus: Towards data storage at the single molecule level

The miniaturization of the current technology of storage media is hindered by fundamental limits of quantum mechanics. A new approach consists in using so-called spin-crossover molecules as the smallest possible storage unit. Similar to normal hard drives, these special molecules can save information via their magnetic state. A research team from Kiel University has now managed to successfully place a new class of spin-crossover molecules onto a surface and to improve the molecule’s storage capacity. The storage density of conventional hard drives could therefore theoretically be increased by more than one hundred fold. The study has been published in the scientific journal Nano Letters.

Over the past few years, the building blocks of storage media have gotten ever smaller. But further miniaturization of the current technology is hindered by...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

See, understand and experience the work of the future

11.12.2017 | Event News

Innovative strategies to tackle parasitic worms

08.12.2017 | Event News

AKL’18: The opportunities and challenges of digitalization in the laser industry

07.12.2017 | Event News

 
Latest News

Engineers program tiny robots to move, think like insects

15.12.2017 | Power and Electrical Engineering

One in 5 materials chemistry papers may be wrong, study suggests

15.12.2017 | Materials Sciences

New antbird species discovered in Peru by LSU ornithologists

15.12.2017 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>