Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

First theoretical proof: Measurement of a single nuclear spin in biological samples

12.05.2015

Physicists of the University of Basel and the Swiss Nanoscience Institute were able to show for the first time that the nuclear spins of single molecules can be detected with the help of magnetic particles at room temperature.

In «Nature Nanotechnology», the researchers describe a novel experimental setup with which the tiny magnetic fields of the nuclear spins of single biomolecules – undetectable so far – could be registered for the first time. The proposed concept would improve medical diagnostics as well as analyses of biological and chemical samples in a decisive step forward.

The measurement of nuclear spins is routine by now in medical diagnostics (MRI). However, the currently existing devices need billions of atoms for the analysis and thus are not useful for many small-scale applications. Over many decades, scientists worldwide have thus engaged in an intense search for alternative methods, which would improve the sensitivity of the measurement techniques.

With the help of various types of sensors (SQUID- and Hall-sensors) and with magnetic resonance force microscopes, it has become possible to detect spins of single electrons and achieve structural resolution at the nanoscale. However, the detection of single nuclear spins of complex biological samples – the holy grail in the field – has not been possible so far.

Diamond crystals with tiny defects

The researchers from Basel now investigate the application of sensors made out of diamonds that host tiny defects in their crystal structure. In the crystal lattice of the diamond a Carbon atom is replaced by a Nitrogen atom, with a vacant site next to it.

These so-called Nitrogen-Vacancy (NV) centers generate spins, which are ideally suited for detection of magnetic fields. At room temperature, researchers have shown experimentally in many labs before that with such NV centers resolution of single molecules is possible. However, this requires atomistically close distances between sensor and sample, which is not possible for biological material.

A tiny ferromagnetic particle, placed between sample and NV center, can solve this problem. Indeed, if the nuclear spin of the sample is driven at a specific resonance frequency, the resonance of the ferromagnetic particle changes. With the help of an NV center that is in close proximity of the magnetic particle, the scientists can then detect this modified resonance.

Measuring technology breakthrough?

The theoretical analysis and experimental techniques of the researchers in the teams of Prof. Daniel Loss and Prof. Patrick Maletinsky have shown that the use of such ferromagnetic particles can lead to a ten-thousand-fold amplification of the magnetic field of nuclear spins. „I am confident that our concept will soon be implemented in real systems and will lead to a breakthrough in metrology“, comments Daniel Loss the recent publication, where the first author Dr. Luka Trifunovic, postdoc in the Loss team, made essential contributions and which was performed in collaboration with colleagues from the JARA Institute for Quantum Information (Aachen, Deutschland) and the Harvard University (Cambridge, USA).

Original source
Luka Trifunovic, Fabio L. Pedrocchi, Silas Hoffman, Patrick Maletinsky, Amir Yacoby, and Daniel Loss
High-efficiency resonant amplification of weak magnetic fields for single spin magnetometry at room temperature
Nature Nanotechnology (2015), doi: 10.1038/nnano.2015.74

Further information
Prof. Daniel Loss, University of Basel, Department of Physics, phone: +41 61 267 37 49, email: daniel.loss@unibas.ch

Weitere Informationen:

http://dx.doi.org/10.1038/nnano.2015.74 - Abstract
http://quantumtheory.physik.unibas.ch/people/loss/ - Research Group Prof. Daniel Loss

Reto Caluori | Universität Basel
Further information:
http://www.unibas.ch

More articles from Physics and Astronomy:

nachricht Measured for the first time: Direction of light waves changed by quantum effect
24.05.2017 | Vienna University of Technology

nachricht Physicists discover mechanism behind granular capillary effect
24.05.2017 | University of Cologne

All articles from Physics and Astronomy >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: A quantum walk of photons

Physicists from the University of Würzburg are capable of generating identical looking single light particles at the push of a button. Two new studies now demonstrate the potential this method holds.

The quantum computer has fuelled the imagination of scientists for decades: It is based on fundamentally different phenomena than a conventional computer....

Im Focus: Turmoil in sluggish electrons’ existence

An international team of physicists has monitored the scattering behaviour of electrons in a non-conducting material in real-time. Their insights could be beneficial for radiotherapy.

We can refer to electrons in non-conducting materials as ‘sluggish’. Typically, they remain fixed in a location, deep inside an atomic composite. It is hence...

Im Focus: Wafer-thin Magnetic Materials Developed for Future Quantum Technologies

Two-dimensional magnetic structures are regarded as a promising material for new types of data storage, since the magnetic properties of individual molecular building blocks can be investigated and modified. For the first time, researchers have now produced a wafer-thin ferrimagnet, in which molecules with different magnetic centers arrange themselves on a gold surface to form a checkerboard pattern. Scientists at the Swiss Nanoscience Institute at the University of Basel and the Paul Scherrer Institute published their findings in the journal Nature Communications.

Ferrimagnets are composed of two centers which are magnetized at different strengths and point in opposing directions. Two-dimensional, quasi-flat ferrimagnets...

Im Focus: World's thinnest hologram paves path to new 3-D world

Nano-hologram paves way for integration of 3-D holography into everyday electronics

An Australian-Chinese research team has created the world's thinnest hologram, paving the way towards the integration of 3D holography into everyday...

Im Focus: Using graphene to create quantum bits

In the race to produce a quantum computer, a number of projects are seeking a way to create quantum bits -- or qubits -- that are stable, meaning they are not much affected by changes in their environment. This normally needs highly nonlinear non-dissipative elements capable of functioning at very low temperatures.

In pursuit of this goal, researchers at EPFL's Laboratory of Photonics and Quantum Measurements LPQM (STI/SB), have investigated a nonlinear graphene-based...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Marine Conservation: IASS Contributes to UN Ocean Conference in New York on 5-9 June

24.05.2017 | Event News

AWK Aachen Machine Tool Colloquium 2017: Internet of Production for Agile Enterprises

23.05.2017 | Event News

Dortmund MST Conference presents Individualized Healthcare Solutions with micro and nanotechnology

22.05.2017 | Event News

 
Latest News

Physicists discover mechanism behind granular capillary effect

24.05.2017 | Physics and Astronomy

Measured for the first time: Direction of light waves changed by quantum effect

24.05.2017 | Physics and Astronomy

Marine Conservation: IASS Contributes to UN Ocean Conference in New York on 5-9 June

24.05.2017 | Event News

VideoLinks
B2B-VideoLinks
More VideoLinks >>>