Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

First light for SPHERE exoplanet imager

04.06.2014

Revolutionary new VLT instrument installed

SPHERE passed its acceptance tests in Europe in December 2013 and was then shipped to Paranal. The delicate reassembly was completed in May 2014 and the instrument is now mounted on VLT Unit Telescope 3. SPHERE is the latest of the second generation of instruments for the VLT (the first three were X-shooter, KMOS and MUSE).


This infrared image shows the dust ring around the nearby star HR 4796A in the southern constellation of Centaurus. It was one of the first produced by the SPHERE instrument soon after it was installed on ESO's Very Large Telescope in May 2014. It shows not only the ring itself with great clarity, but also reveals the power of SPHERE to reduce the glare from the very bright star -- the key to finding and studying exoplanets in future.

Credit: ESO/J.-L. Beuzit et al./SPHERE Consortium

SPHERE combines several advanced techniques to give the highest contrast ever reached for direct planetary imaging — far beyond what could be achieved with NACO, which took the first ever direct image of an exoplanet. To reach its impressive performance SPHERE required early development of novel technologies, in particular in the area of adaptive optics, special detectors and coronagraph components.

"SPHERE is a very complex instrument. Thanks to the hard work of the many people who were involved in its design, construction and installation it has already exceeded our expectations. Wonderful!" says Jean-Luc Beuzit, of the Institut de Planétologie et d'Astrophysique de Grenoble, France and Principal Investigator of SPHERE.

SPHERE's main goal is to find and characterise giant exoplanets orbiting nearby stars by direct imaging [1]. This is an extremely challenging task as such planets are both very close to their parent stars in the sky and also very much fainter. In a normal image, even in the best conditions, the light from the star totally swamps the weak glow from the planet. The whole design of SPHERE is therefore focused on reaching the highest contrast possible in a tiny patch of sky around the dazzling star.

The first of three novel techniques exploited by SPHERE is extreme adaptive optics to correct for the effects of the Earth's atmosphere so that images are sharper and the contrast of the exoplanet increased. Secondly, a coronagraph is used to block out the light from the star and increase the contrast still further. Finally, a technique called differential imaging is applied that exploits differences between planetary and stellar light in terms of its colour or polarisation — and these subtle differences can also be exploited to reveal a currently invisible exoplanet (ann13069 , eso0503) [2].

SPHERE was designed and built by the following institutes: Institut de Planétologie et d'Astrophysique de Grenoble; Max-Planck-Institut für Astronomie in Heidelberg; Laboratoire d'Astrophysique de Marseille; Laboratoire d'Etudes Spatiales et d'Instrumentation en Astrophysique de l'Observatoire de Paris; Laboratoire Lagrange in Nice; ONERA; Observatoire de Genève; Italian National Institute for Astrophysics coordinated by the Osservatorio Astronomico di Padova; Institute for Astronomy, ETH Zurich; Astronomical Institute of the University of Amsterdam; Netherlands Research School for Astronomy (NOVA-ASTRON) and ESO.

During the first light observations several test targets were observed using the many different modes of SPHERE. These include one of the best images so far of the ring of dust around the nearby star HR 4796A. It not only shows the ring with exceptional clarity but also illustrates how well SPHERE can suppress the glare of the bright star at the centre of the picture.

Following further extensive tests and science verification observations SPHERE will be made available to the astronomical community later in 2014.

"This is just the beginning. SPHERE is a uniquely powerful tool andwill doubtless reveal many exciting surprises in the years to come," concludes Jean-Luc Beuzit.

###

Notes

[1] Most of the exoplanets currently known were discovered using indirect techniques — such as radial velocity variations of the host star, or the dip in brightness of the star caused by a transiting exoplanet. Only a few exoplanets have so far been directly imaged (eso0515 , eso0842 ).

[2] A further, but simpler trick employed by SPHERE is to take many pictures of an object, but with a significant rotation of the image in between each. Features in the pictures that rotate are artefacts of the imaging process, and features that stay in the same place are real objects in the sky.

More information

ESO is the foremost intergovernmental astronomy organisation in Europe and the world's most productive ground-based astronomical observatory by far. It is supported by 15 countries: Austria, Belgium, Brazil, the Czech Republic, Denmark, France, Finland, Germany, Italy, the Netherlands, Portugal, Spain, Sweden, Switzerland and the United Kingdom. ESO carries out an ambitious programme focused on the design, construction and operation of powerful ground-based observing facilities enabling astronomers to make important scientific discoveries. ESO also plays a leading role in promoting and organising cooperation in astronomical research. ESO operates three unique world-class observing sites in Chile: La Silla, Paranal and Chajnantor. At Paranal, ESO operates the Very Large Telescope, the world's most advanced visible-light astronomical observatory and two survey telescopes. VISTA works in the infrared and is the world's largest survey telescope and the VLT Survey Telescope is the largest telescope designed to exclusively survey the skies in visible light. ESO is the European partner of a revolutionary astronomical telescope ALMA, the largest astronomical project in existence. ESO is currently planning the 39-metre European Extremely Large optical/near-infrared Telescope, the E-ELT, which will become "the world's biggest eye on the sky".

Links

SPHERE science page at ESO: http://www.eso.org/sci/facilities/develop/instruments/sphere.html

SPHERE information at Observatoire des Sciences de l'Univers de Grenoble: http://sphere.osug.fr/?lang=en

Photos of the VLT: http://www.eso.org/public/images/archive/category/paranal/

Contacts

Jean-Luc Beuzit
Institut de Planétologie et d'Astrophysique de Grenoble
Grenoble, France
Tel: +33 4 76 63 55 20
Cell: +33 6 87 39 62 85
Email: Jean-Luc.Beuzit@obs.ujf-grenoble.fr

Markus Feldt
Max-Planck-Institut für Astronomie
Heidelberg, Germany
Tel: +49 6221 528 262
Email: mfeldt@mpia.de

Markus Kasper
ESO
Garching bei München, Germany
Tel: +49 89 3200 6359
Email: mkasper@eso.org

Norbert Hubin
ESO
Garching bei München, Germany
Tel: +49 89 3200 6517
Email: nhubin@eso.org

Richard Hook
ESO education and Public Outreach Department
Garching bei München, Germany
Tel: +49 89 3200 6655
Cell: +49 151 1537 3591
Email: rhook@eso.org

Richard Hook | Eurek Alert!

Further reports about: Astronomie ESO Outreach Telescope VLT differences exoplanets optics techniques

More articles from Physics and Astronomy:

nachricht Artificial Intelligence Helps in the Discovery of New Materials
21.09.2016 | Universität Basel

nachricht Magnetic polaron imaged for the first time
19.09.2016 | Aalto University

All articles from Physics and Astronomy >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: OLED microdisplays in data glasses for improved human-machine interaction

The Fraunhofer Institute for Organic Electronics, Electron Beam and Plasma Technology FEP has been developing various applications for OLED microdisplays based on organic semiconductors. By integrating the capabilities of an image sensor directly into the microdisplay, eye movements can be recorded by the smart glasses and utilized for guidance and control functions, as one example. The new design will be debuted at Augmented World Expo Europe (AWE) in Berlin at Booth B25, October 18th – 19th.

“Augmented-reality” and “wearables” have become terms we encounter almost daily. Both can make daily life a little simpler and provide valuable assistance for...

Im Focus: Artificial Intelligence Helps in the Discovery of New Materials

With the help of artificial intelligence, chemists from the University of Basel in Switzerland have computed the characteristics of about two million crystals made up of four chemical elements. The researchers were able to identify 90 previously unknown thermodynamically stable crystals that can be regarded as new materials. They report on their findings in the scientific journal Physical Review Letters.

Elpasolite is a glassy, transparent, shiny and soft mineral with a cubic crystal structure. First discovered in El Paso County (Colorado, USA), it can also be...

Im Focus: Complex hardmetal tools out of the 3D printer

For the first time, Fraunhofer IKTS shows additively manufactured hardmetal tools at WorldPM 2016 in Hamburg. Mechanical, chemical as well as a high heat resistance and extreme hardness are required from tools that are used in mechanical and automotive engineering or in plastics and building materials industry. Researchers at the Fraunhofer Institute for Ceramic Technologies and Systems IKTS in Dresden managed the production of complex hardmetal tools via 3D printing in a quality that are in no way inferior to conventionally produced high-performance tools.

Fraunhofer IKTS counts decades of proven expertise in the development of hardmetals. To date, reliable cutting, drilling, pressing and stamping tools made of...

Im Focus: Launch of New Industry Working Group for Process Control in Laser Material Processing

At AKL’16, the International Laser Technology Congress held in May this year, interest in the topic of process control was greater than expected. Appropriately, the event was also used to launch the Industry Working Group for Process Control in Laser Material Processing. The group provides a forum for representatives from industry and research to initiate pre-competitive projects and discuss issues such as standards, potential cost savings and feasibility.

In the age of industry 4.0, laser technology is firmly established within manufacturing. A wide variety of laser techniques – from USP ablation and additive...

Im Focus: New laser joining technologies at ‘K 2016’ trade fair

Every three years, the plastics industry gathers at K, the international trade fair for plastics and rubber in Düsseldorf. The Fraunhofer Institute for Laser Technology ILT will also be attending again and presenting many innovative technologies, such as for joining plastics and metals using ultrashort pulse lasers. From October 19 to 26, you can find the Fraunhofer ILT at the joint Fraunhofer booth SC01 in Hall 7.

K is the world’s largest trade fair for the plastics and rubber industry. As in previous years, the organizers are expecting 3,000 exhibitors and more than...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Experts from industry and academia discuss the future mobile telecommunications standard 5G

23.09.2016 | Event News

ICPE in Graz for the seventh time

20.09.2016 | Event News

Using mathematical models to understand our brain

16.09.2016 | Event News

 
Latest News

Chains of nanogold – forged with atomic precision

23.09.2016 | Life Sciences

New leukemia treatment offers hope

23.09.2016 | Health and Medicine

Self-assembled nanostructures hit their target

23.09.2016 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>