Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

First light for SPHERE exoplanet imager

04.06.2014

Revolutionary new VLT instrument installed

SPHERE passed its acceptance tests in Europe in December 2013 and was then shipped to Paranal. The delicate reassembly was completed in May 2014 and the instrument is now mounted on VLT Unit Telescope 3. SPHERE is the latest of the second generation of instruments for the VLT (the first three were X-shooter, KMOS and MUSE).


This infrared image shows the dust ring around the nearby star HR 4796A in the southern constellation of Centaurus. It was one of the first produced by the SPHERE instrument soon after it was installed on ESO's Very Large Telescope in May 2014. It shows not only the ring itself with great clarity, but also reveals the power of SPHERE to reduce the glare from the very bright star -- the key to finding and studying exoplanets in future.

Credit: ESO/J.-L. Beuzit et al./SPHERE Consortium

SPHERE combines several advanced techniques to give the highest contrast ever reached for direct planetary imaging — far beyond what could be achieved with NACO, which took the first ever direct image of an exoplanet. To reach its impressive performance SPHERE required early development of novel technologies, in particular in the area of adaptive optics, special detectors and coronagraph components.

"SPHERE is a very complex instrument. Thanks to the hard work of the many people who were involved in its design, construction and installation it has already exceeded our expectations. Wonderful!" says Jean-Luc Beuzit, of the Institut de Planétologie et d'Astrophysique de Grenoble, France and Principal Investigator of SPHERE.

SPHERE's main goal is to find and characterise giant exoplanets orbiting nearby stars by direct imaging [1]. This is an extremely challenging task as such planets are both very close to their parent stars in the sky and also very much fainter. In a normal image, even in the best conditions, the light from the star totally swamps the weak glow from the planet. The whole design of SPHERE is therefore focused on reaching the highest contrast possible in a tiny patch of sky around the dazzling star.

The first of three novel techniques exploited by SPHERE is extreme adaptive optics to correct for the effects of the Earth's atmosphere so that images are sharper and the contrast of the exoplanet increased. Secondly, a coronagraph is used to block out the light from the star and increase the contrast still further. Finally, a technique called differential imaging is applied that exploits differences between planetary and stellar light in terms of its colour or polarisation — and these subtle differences can also be exploited to reveal a currently invisible exoplanet (ann13069 , eso0503) [2].

SPHERE was designed and built by the following institutes: Institut de Planétologie et d'Astrophysique de Grenoble; Max-Planck-Institut für Astronomie in Heidelberg; Laboratoire d'Astrophysique de Marseille; Laboratoire d'Etudes Spatiales et d'Instrumentation en Astrophysique de l'Observatoire de Paris; Laboratoire Lagrange in Nice; ONERA; Observatoire de Genève; Italian National Institute for Astrophysics coordinated by the Osservatorio Astronomico di Padova; Institute for Astronomy, ETH Zurich; Astronomical Institute of the University of Amsterdam; Netherlands Research School for Astronomy (NOVA-ASTRON) and ESO.

During the first light observations several test targets were observed using the many different modes of SPHERE. These include one of the best images so far of the ring of dust around the nearby star HR 4796A. It not only shows the ring with exceptional clarity but also illustrates how well SPHERE can suppress the glare of the bright star at the centre of the picture.

Following further extensive tests and science verification observations SPHERE will be made available to the astronomical community later in 2014.

"This is just the beginning. SPHERE is a uniquely powerful tool andwill doubtless reveal many exciting surprises in the years to come," concludes Jean-Luc Beuzit.

###

Notes

[1] Most of the exoplanets currently known were discovered using indirect techniques — such as radial velocity variations of the host star, or the dip in brightness of the star caused by a transiting exoplanet. Only a few exoplanets have so far been directly imaged (eso0515 , eso0842 ).

[2] A further, but simpler trick employed by SPHERE is to take many pictures of an object, but with a significant rotation of the image in between each. Features in the pictures that rotate are artefacts of the imaging process, and features that stay in the same place are real objects in the sky.

More information

ESO is the foremost intergovernmental astronomy organisation in Europe and the world's most productive ground-based astronomical observatory by far. It is supported by 15 countries: Austria, Belgium, Brazil, the Czech Republic, Denmark, France, Finland, Germany, Italy, the Netherlands, Portugal, Spain, Sweden, Switzerland and the United Kingdom. ESO carries out an ambitious programme focused on the design, construction and operation of powerful ground-based observing facilities enabling astronomers to make important scientific discoveries. ESO also plays a leading role in promoting and organising cooperation in astronomical research. ESO operates three unique world-class observing sites in Chile: La Silla, Paranal and Chajnantor. At Paranal, ESO operates the Very Large Telescope, the world's most advanced visible-light astronomical observatory and two survey telescopes. VISTA works in the infrared and is the world's largest survey telescope and the VLT Survey Telescope is the largest telescope designed to exclusively survey the skies in visible light. ESO is the European partner of a revolutionary astronomical telescope ALMA, the largest astronomical project in existence. ESO is currently planning the 39-metre European Extremely Large optical/near-infrared Telescope, the E-ELT, which will become "the world's biggest eye on the sky".

Links

SPHERE science page at ESO: http://www.eso.org/sci/facilities/develop/instruments/sphere.html

SPHERE information at Observatoire des Sciences de l'Univers de Grenoble: http://sphere.osug.fr/?lang=en

Photos of the VLT: http://www.eso.org/public/images/archive/category/paranal/

Contacts

Jean-Luc Beuzit
Institut de Planétologie et d'Astrophysique de Grenoble
Grenoble, France
Tel: +33 4 76 63 55 20
Cell: +33 6 87 39 62 85
Email: Jean-Luc.Beuzit@obs.ujf-grenoble.fr

Markus Feldt
Max-Planck-Institut für Astronomie
Heidelberg, Germany
Tel: +49 6221 528 262
Email: mfeldt@mpia.de

Markus Kasper
ESO
Garching bei München, Germany
Tel: +49 89 3200 6359
Email: mkasper@eso.org

Norbert Hubin
ESO
Garching bei München, Germany
Tel: +49 89 3200 6517
Email: nhubin@eso.org

Richard Hook
ESO education and Public Outreach Department
Garching bei München, Germany
Tel: +49 89 3200 6655
Cell: +49 151 1537 3591
Email: rhook@eso.org

Richard Hook | Eurek Alert!

Further reports about: Astronomie ESO Outreach Telescope VLT differences exoplanets optics techniques

More articles from Physics and Astronomy:

nachricht Astronomers find unexpected, dust-obscured star formation in distant galaxy
24.03.2017 | University of Massachusetts at Amherst

nachricht Gravitational wave kicks monster black hole out of galactic core
24.03.2017 | NASA/Goddard Space Flight Center

All articles from Physics and Astronomy >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Giant Magnetic Fields in the Universe

Astronomers from Bonn and Tautenburg in Thuringia (Germany) used the 100-m radio telescope at Effelsberg to observe several galaxy clusters. At the edges of these large accumulations of dark matter, stellar systems (galaxies), hot gas, and charged particles, they found magnetic fields that are exceptionally ordered over distances of many million light years. This makes them the most extended magnetic fields in the universe known so far.

The results will be published on March 22 in the journal „Astronomy & Astrophysics“.

Galaxy clusters are the largest gravitationally bound structures in the universe. With a typical extent of about 10 million light years, i.e. 100 times the...

Im Focus: Tracing down linear ubiquitination

Researchers at the Goethe University Frankfurt, together with partners from the University of Tübingen in Germany and Queen Mary University as well as Francis Crick Institute from London (UK) have developed a novel technology to decipher the secret ubiquitin code.

Ubiquitin is a small protein that can be linked to other cellular proteins, thereby controlling and modulating their functions. The attachment occurs in many...

Im Focus: Perovskite edges can be tuned for optoelectronic performance

Layered 2D material improves efficiency for solar cells and LEDs

In the eternal search for next generation high-efficiency solar cells and LEDs, scientists at Los Alamos National Laboratory and their partners are creating...

Im Focus: Polymer-coated silicon nanosheets as alternative to graphene: A perfect team for nanoelectronics

Silicon nanosheets are thin, two-dimensional layers with exceptional optoelectronic properties very similar to those of graphene. Albeit, the nanosheets are less stable. Now researchers at the Technical University of Munich (TUM) have, for the first time ever, produced a composite material combining silicon nanosheets and a polymer that is both UV-resistant and easy to process. This brings the scientists a significant step closer to industrial applications like flexible displays and photosensors.

Silicon nanosheets are thin, two-dimensional layers with exceptional optoelectronic properties very similar to those of graphene. Albeit, the nanosheets are...

Im Focus: Researchers Imitate Molecular Crowding in Cells

Enzymes behave differently in a test tube compared with the molecular scrum of a living cell. Chemists from the University of Basel have now been able to simulate these confined natural conditions in artificial vesicles for the first time. As reported in the academic journal Small, the results are offering better insight into the development of nanoreactors and artificial organelles.

Enzymes behave differently in a test tube compared with the molecular scrum of a living cell. Chemists from the University of Basel have now been able to...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

International Land Use Symposium ILUS 2017: Call for Abstracts and Registration open

20.03.2017 | Event News

CONNECT 2017: International congress on connective tissue

14.03.2017 | Event News

ICTM Conference: Turbine Construction between Big Data and Additive Manufacturing

07.03.2017 | Event News

 
Latest News

Argon is not the 'dope' for metallic hydrogen

24.03.2017 | Materials Sciences

Astronomers find unexpected, dust-obscured star formation in distant galaxy

24.03.2017 | Physics and Astronomy

Gravitational wave kicks monster black hole out of galactic core

24.03.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>