Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:


First Indirect Evidence of So-Far Undetected Strange Baryons


"Invisible" particles containing at least one strange quark lower the temperature at which other particles "freeze out" from quark-gluon plasma

New supercomputing calculations provide the first evidence that particles predicted by the theory of quark-gluon interactions but never before observed are being produced in heavy-ion collisions at the Relativistic Heavy Ion Collider (RHIC), a facility that is dedicated to studying nuclear physics.

Courtesy Brookhaven National Laboratory

Brookhaven theoretical physicist Swagato Mukherjee

These heavy strange baryons, containing at least one strange quark, still cannot be observed directly, but instead make their presence known by lowering the temperature at which other strange baryons "freeze out" from the quark-gluon plasma (QGP) discovered and created at RHIC, a U.S. Department of Energy (DOE) Office of Science user facility located at DOE's Brookhaven National Laboratory.

RHIC is one of just two places in the world where scientists can create and study a primordial soup of unbound quarks and gluons-akin to what existed in the early universe some 14 billion years ago. The research is helping to unravel how these building blocks of matter became bound into hadrons, particles composed of two or three quarks held together by gluons, the carriers of nature's strongest force.

"Baryons, which are hadrons made of three quarks, make up almost all the matter we see in the universe today," said Brookhaven theoretical physicist Swagato Mukherjee, a co-author on a paper describing the new results in Physical Review Letters.

"The theory that tells us how this matter forms-including the protons and neutrons that make up the nuclei of atoms-also predicts the existence of many different baryons, including some that are very heavy and short-lived, containing one or more heavy 'strange' quarks. Now we have indirect evidence from our calculations and comparisons with experimental data at RHIC that these predicted higher mass states of strange baryons do exist," he said.

Added Berndt Mueller, Associate Laboratory Director for Nuclear and Particle Physics at Brookhaven, "This finding is particularly remarkable because strange quarks were one of the early signatures of the formation of the primordial quark-gluon plasma. Now we're using this QGP signature as a tool to discover previously unknown baryons that emerge from the QGP and could not be produced otherwise."

Freezing point depression and supercomputing calculations

The evidence comes from an effect on the thermodynamic properties of the matter nuclear physicists can detect coming out of collisions at RHIC. Specifically, the scientists observe certain more-common strange baryons (omega baryons, cascade baryons, lambda baryons) "freezing out" of RHIC's quark-gluon plasma at a lower temperature than would be expected if the predicted extra-heavy strange baryons didn't exist.

"It's similar to the way table salt lowers the freezing point of liquid water," said Mukherjee. "These 'invisible' hadrons are like salt molecules floating around in the hot gas of hadrons, making other particles freeze out at a lower temperature than they would if the 'salt' wasn't there."

To see the evidence, the scientists performed calculations using lattice QCD, a technique that uses points on an imaginary four-dimensional lattice (three spatial dimensions plus time) to represent the positions of quarks and gluons, and complex mathematical equations to calculate interactions among them, as described by the theory of quantum chromodynamics (QCD).

"The calculations tell you where you have bound or unbound quarks, depending on the temperature," Mukherjee said.

The scientists were specifically looking for fluctuations of conserved baryon number and strangeness and exploring how the calculations fit with the observed RHIC measurements at a wide range of energies.

The calculations show that inclusion of the predicted but "experimentally uncharted" strange baryons fit better with the data, providing the first evidence that these so-far unobserved particles exist and exert their effect on the freeze-out temperature of the observable particles.

These findings are helping physicists quantitatively plot the points on the phase diagram that maps out the different phases of nuclear matter, including hadrons and quark-gluon plasma, and the transitions between them under various conditions of temperature and density.

"To accurately plot points on the phase diagram, you have to know what the contents are on the bound-state, hadron side of the transition line-even if you haven't seen them," Mukherjee said. "We've found that the higher mass states of strange baryons affect the production of ground states that we can observe. And the line where we see the ordinary matter moves to a lower temperature because of the multitude of higher states that we can't see."

The research was carried out by the Brookhaven Lab's Lattice Gauge Theory group, led by Frithjof Karsch, in collaboration with scientists from Bielefeld University, Germany, and Central China Normal University. The supercomputing calculations were performed using GPU-clusters at DOE's Thomas Jefferson National Accelerator Facility (Jefferson Lab), Bielefeld University, Paderborn University, and Indiana University with funding from the Scientific Discovery through Advanced Computing (SciDAC) program of the DOE Office of Science (Nuclear Physics and Advanced Scientific Computing Research), the Federal Ministry of Education and Research of Germany, the German Research Foundation, the European Commission Directorate-General for Research & Innovation and the GSI BILAER grant. The experimental program at RHIC is funded primarily by the DOE Office of Science.

Brookhaven National Laboratory is supported by the Office of Science of the U.S. Department of Energy. The Office of Science is the single largest supporter of basic research in the physical sciences in the United States, and is working to address some of the most pressing challenges of our time. For more information, please visit

Related Links

Scientific paper: "Additional Strange Hadrons from QCD Thermodynamics and Strangeness Freezeout in Heavy Ion Collisions"

An electronic version of this news release is available online:

Media contacts: Karen McNulty Walsh, (631) 344-8350, or Peter Genzer, (631) 344-3174,

One of ten national laboratories overseen and primarily funded by the Office of Science of the U.S. Department of Energy (DOE), Brookhaven National Laboratory conducts research in the physical, biomedical, and environmental sciences, as well as in energy technologies and national security. Brookhaven Lab also builds and operates major scientific facilities available to university, industry and government researchers. Brookhaven is operated and managed for DOE's Office of Science by Brookhaven Science Associates, a limited-liability company founded by the Research Foundation for the State University of New York on behalf of Stony Brook University, the largest academic user of Laboratory facilities, and Battelle, a nonprofit applied science and technology organization.

Karen Walsh | newswise

Further reports about: Brookhaven Energy Laboratory QCD QGP RHIC baryons evidence hadrons particles temperature

More articles from Physics and Astronomy:

nachricht A New Litmus Test for Chaos?
29.07.2015 | American Institute of Physics (AIP)

nachricht First detection of lithium from an exploding star
29.07.2015 | ESO

All articles from Physics and Astronomy >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: On the crest of the wave: Electronics on a time scale shorter than a cycle of light

Physicists from Regensburg and Marburg, Germany have succeeded in taking a slow-motion movie of speeding electrons in a solid driven by a strong light wave. In the process, they have unraveled a novel quantum phenomenon, which will be reported in the forthcoming edition of Nature.

The advent of ever faster electronics featuring clock rates up to the multiple-gigahertz range has revolutionized our day-to-day life. Researchers and...

Im Focus: Superfast fluorescence sets new speed record

Plasmonic device has speed and efficiency to serve optical computers

Researchers have developed an ultrafast light-emitting device that can flip on and off 90 billion times a second and could form the basis of optical computing.

Im Focus: Unlocking the rice immune system

Joint BioEnergy Institute study identifies bacterial protein that is key to protecting rice against bacterial blight

A bacterial signal that when recognized by rice plants enables the plants to resist a devastating blight disease has been identified by a multi-national team...

Im Focus: Smarter window materials can control light and energy

Researchers in the Cockrell School of Engineering at The University of Texas at Austin are one step closer to delivering smart windows with a new level of energy efficiency, engineering materials that allow windows to reveal light without transferring heat and, conversely, to block light while allowing heat transmission, as described in two new research papers.

By allowing indoor occupants to more precisely control the energy and sunlight passing through a window, the new materials could significantly reduce costs for...

Im Focus: Simulations lead to design of near-frictionless material

Argonne scientists used Mira to identify and improve a new mechanism for eliminating friction, which fed into the development of a hybrid material that exhibited superlubricity at the macroscale for the first time. Argonne Leadership Computing Facility (ALCF) researchers helped enable the groundbreaking simulations by overcoming a performance bottleneck that doubled the speed of the team's code.

While reviewing the simulation results of a promising new lubricant material, Argonne researcher Sanket Deshmukh stumbled upon a phenomenon that had never been...

All Focus news of the innovation-report >>>



Event News

3rd Euro Bio-inspired - International Conference and Exhibition on Bio-inspired Materials

23.07.2015 | Event News

Clash of Realities – International Conference on the Art, Technology and Theory of Digital Games

10.07.2015 | Event News

World Conference on Regenerative Medicine in Leipzig: Last chance to submit abstracts until 2 July

25.06.2015 | Event News

Latest News

Surprising similarity in fly and mouse motion vision

30.07.2015 | Life Sciences

Efficient Infrared Heat Saves Time and Energy in the Manufacture of Motor Vehicle Carpets

30.07.2015 | Trade Fair News

Roentgen prize goes to Dr Eleftherios Goulielmakis

30.07.2015 | Awards Funding

More VideoLinks >>>