Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

First Indirect Evidence of So-Far Undetected Strange Baryons

21.08.2014

"Invisible" particles containing at least one strange quark lower the temperature at which other particles "freeze out" from quark-gluon plasma

New supercomputing calculations provide the first evidence that particles predicted by the theory of quark-gluon interactions but never before observed are being produced in heavy-ion collisions at the Relativistic Heavy Ion Collider (RHIC), a facility that is dedicated to studying nuclear physics.


Courtesy Brookhaven National Laboratory

Brookhaven theoretical physicist Swagato Mukherjee

These heavy strange baryons, containing at least one strange quark, still cannot be observed directly, but instead make their presence known by lowering the temperature at which other strange baryons "freeze out" from the quark-gluon plasma (QGP) discovered and created at RHIC, a U.S. Department of Energy (DOE) Office of Science user facility located at DOE's Brookhaven National Laboratory.

RHIC is one of just two places in the world where scientists can create and study a primordial soup of unbound quarks and gluons-akin to what existed in the early universe some 14 billion years ago. The research is helping to unravel how these building blocks of matter became bound into hadrons, particles composed of two or three quarks held together by gluons, the carriers of nature's strongest force.

"Baryons, which are hadrons made of three quarks, make up almost all the matter we see in the universe today," said Brookhaven theoretical physicist Swagato Mukherjee, a co-author on a paper describing the new results in Physical Review Letters.

"The theory that tells us how this matter forms-including the protons and neutrons that make up the nuclei of atoms-also predicts the existence of many different baryons, including some that are very heavy and short-lived, containing one or more heavy 'strange' quarks. Now we have indirect evidence from our calculations and comparisons with experimental data at RHIC that these predicted higher mass states of strange baryons do exist," he said.

Added Berndt Mueller, Associate Laboratory Director for Nuclear and Particle Physics at Brookhaven, "This finding is particularly remarkable because strange quarks were one of the early signatures of the formation of the primordial quark-gluon plasma. Now we're using this QGP signature as a tool to discover previously unknown baryons that emerge from the QGP and could not be produced otherwise."

Freezing point depression and supercomputing calculations

The evidence comes from an effect on the thermodynamic properties of the matter nuclear physicists can detect coming out of collisions at RHIC. Specifically, the scientists observe certain more-common strange baryons (omega baryons, cascade baryons, lambda baryons) "freezing out" of RHIC's quark-gluon plasma at a lower temperature than would be expected if the predicted extra-heavy strange baryons didn't exist.

"It's similar to the way table salt lowers the freezing point of liquid water," said Mukherjee. "These 'invisible' hadrons are like salt molecules floating around in the hot gas of hadrons, making other particles freeze out at a lower temperature than they would if the 'salt' wasn't there."

To see the evidence, the scientists performed calculations using lattice QCD, a technique that uses points on an imaginary four-dimensional lattice (three spatial dimensions plus time) to represent the positions of quarks and gluons, and complex mathematical equations to calculate interactions among them, as described by the theory of quantum chromodynamics (QCD).

"The calculations tell you where you have bound or unbound quarks, depending on the temperature," Mukherjee said.

The scientists were specifically looking for fluctuations of conserved baryon number and strangeness and exploring how the calculations fit with the observed RHIC measurements at a wide range of energies.

The calculations show that inclusion of the predicted but "experimentally uncharted" strange baryons fit better with the data, providing the first evidence that these so-far unobserved particles exist and exert their effect on the freeze-out temperature of the observable particles.

These findings are helping physicists quantitatively plot the points on the phase diagram that maps out the different phases of nuclear matter, including hadrons and quark-gluon plasma, and the transitions between them under various conditions of temperature and density.

"To accurately plot points on the phase diagram, you have to know what the contents are on the bound-state, hadron side of the transition line-even if you haven't seen them," Mukherjee said. "We've found that the higher mass states of strange baryons affect the production of ground states that we can observe. And the line where we see the ordinary matter moves to a lower temperature because of the multitude of higher states that we can't see."

The research was carried out by the Brookhaven Lab's Lattice Gauge Theory group, led by Frithjof Karsch, in collaboration with scientists from Bielefeld University, Germany, and Central China Normal University. The supercomputing calculations were performed using GPU-clusters at DOE's Thomas Jefferson National Accelerator Facility (Jefferson Lab), Bielefeld University, Paderborn University, and Indiana University with funding from the Scientific Discovery through Advanced Computing (SciDAC) program of the DOE Office of Science (Nuclear Physics and Advanced Scientific Computing Research), the Federal Ministry of Education and Research of Germany, the German Research Foundation, the European Commission Directorate-General for Research & Innovation and the GSI BILAER grant. The experimental program at RHIC is funded primarily by the DOE Office of Science.

Brookhaven National Laboratory is supported by the Office of Science of the U.S. Department of Energy. The Office of Science is the single largest supporter of basic research in the physical sciences in the United States, and is working to address some of the most pressing challenges of our time. For more information, please visit science.energy.gov.

Related Links

Scientific paper: "Additional Strange Hadrons from QCD Thermodynamics and Strangeness Freezeout in Heavy Ion Collisions"

An electronic version of this news release is available online:
http://www.bnl.gov/newsroom/news.php?a=11659

Media contacts: Karen McNulty Walsh, (631) 344-8350 kmcnulty@bnl.gov, or Peter Genzer, (631) 344-3174, genzer@bnl.gov

One of ten national laboratories overseen and primarily funded by the Office of Science of the U.S. Department of Energy (DOE), Brookhaven National Laboratory conducts research in the physical, biomedical, and environmental sciences, as well as in energy technologies and national security. Brookhaven Lab also builds and operates major scientific facilities available to university, industry and government researchers. Brookhaven is operated and managed for DOE's Office of Science by Brookhaven Science Associates, a limited-liability company founded by the Research Foundation for the State University of New York on behalf of Stony Brook University, the largest academic user of Laboratory facilities, and Battelle, a nonprofit applied science and technology organization.

Karen Walsh | newswise

Further reports about: Brookhaven Energy Laboratory QCD QGP RHIC baryons evidence hadrons particles temperature

More articles from Physics and Astronomy:

nachricht Interstellar seeds could create oases of life
28.08.2015 | Harvard-Smithsonian Center for Astrophysics

nachricht Draw out of the predicted interatomic force
28.08.2015 | Hiroshima University

All articles from Physics and Astronomy >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: OU astrophysicist and collaborators find supermassive black holes in quasar nearest Earth

A University of Oklahoma astrophysicist and his Chinese collaborator have found two supermassive black holes in Markarian 231, the nearest quasar to Earth, using observations from NASA's Hubble Space Telescope.

The discovery of two supermassive black holes--one larger one and a second, smaller one--are evidence of a binary black hole and suggests that supermassive...

Im Focus: What would a tsunami in the Mediterranean look like?

A team of European researchers have developed a model to simulate the impact of tsunamis generated by earthquakes and applied it to the Eastern Mediterranean. The results show how tsunami waves could hit and inundate coastal areas in southern Italy and Greece. The study is published today (27 August) in Ocean Science, an open access journal of the European Geosciences Union (EGU).

Though not as frequent as in the Pacific and Indian oceans, tsunamis also occur in the Mediterranean, mainly due to earthquakes generated when the African...

Im Focus: Self-healing landscape: landslides after earthquake

In mountainous regions earthquakes often cause strong landslides, which can be exacerbated by heavy rain. However, after an initial increase, the frequency of these mass wasting events, often enormous and dangerous, declines, in fact independently of meteorological events and aftershocks.

These new findings are presented by a German-Franco-Japanese team of geoscientists in the current issue of the journal Geology, under the lead of the GFZ...

Im Focus: FIC Proteins Send Bacteria Into Hibernation

Bacteria do not cease to amaze us with their survival strategies. A research team from the University of Basel's Biozentrum has now discovered how bacteria enter a sleep mode using a so-called FIC toxin. In the current issue of “Cell Reports”, the scientists describe the mechanism of action and also explain why their discovery provides new insights into the evolution of pathogens.

For many poisons there are antidotes which neutralize their toxic effect. Toxin-antitoxin systems in bacteria work in a similar manner: As long as a cell...

Im Focus: Fraunhofer IPA develops prototype of intelligent care cart

It comes when called, bringing care utensils with it and recording how they are used: Fraunhofer IPA is developing an intelligent care cart that provides care staff with physical and informational support in their day-to-day work. The scientists at Fraunhofer IPA have now completed a first prototype. In doing so, they are continuing in their efforts to improve working conditions in the care sector and are developing solutions designed to address the challenges of demographic change.

Technical assistance systems can improve the difficult working conditions in residential nursing homes and hospitals by helping the staff in their work and...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Networking conference in Heidelberg for outstanding mathematicians and computer scientists

20.08.2015 | Event News

Scientists meet in Münster for the world’s largest Chitin und Chitosan Conference

20.08.2015 | Event News

Large agribusiness management strategies

19.08.2015 | Event News

 
Latest News

Interstellar seeds could create oases of life

28.08.2015 | Physics and Astronomy

An ounce of prevention: Research advances on 'scourge' of transplant wards

28.08.2015 | Health and Medicine

Fish Oil-Diet Benefits May be Mediated by Gut Microbes

28.08.2015 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>