Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

First gravitational waves form after 10 million years

06.09.2016

If two galaxies collide, the merging of their central black holes triggers gravitational waves, which ripple throughout space. An international research team involving the University of Zurich has now calculated that this occurs around 10 million years after the two galaxies merge – much faster than previously assumed.

In his General Theory of Relativity, Albert Einstein predicted gravitational waves over a century ago; this year, they were detected directly for the first time: The American Gravitational Wave Observatory LIGO recorded such curvatures in space from Earth, which were caused by the merging of two massive black holes.


This simulation shows how two galaxies merge over a period of 15 millionen years. The red and the blue dots illustrate the two black holes.

Image: Astrophysical Journal

And the research on gravitational waves – and thus the origin of the universe – continues: From 2034 three satellites are to be launched into space in a project headed by the European Space Agency (ESA) to measure gravitational waves at even lower frequency ranges from space using the Evolved Laser Interferometer Space Antenna (eLISA).

Until now, however, it was not possible to conclusively predict the point at which gravitational waves are triggered and spread throughout space when galaxies merge. An international team of astrophysicists from the University of Zurich, the Institute of Space Technology Islamabad, the University of Heidelberg and the Chinese Academy of Sciences has now calculated this for the first time using an extensive simulation.

Much faster than previously assumed

Every galaxy has a supermassive black hole at its core, which can exhibit millions or even billions of solar masses. In a realistic simulation of the universe, the merging of two roughly 3-billion-year-old galaxies lying relatively close to one another was simulated. With the aid of supercomputers, the researchers calculated the time the two central black holes with around 100 million solar masses needed to emit strong gravitational waves after the galaxies collided.

“The result is surprising,” explains Lucio Mayer from the Institute for Computational Science of the University of Zurich: “The merging of the two black holes already triggered the first gravitational waves after 10 million years – around 100 times faster than previously assumed.”

Year-long supercomputer calculation

The computer simulation, which took more than a year, was conducted in China, Zurich and Heidelberg. The project required an innovative computational approach with various numerical codes on different supercomputers. In the process, each supercomputer was responsible for calculating a certain phase of the orbital convergence of the two massive black holes and their parent galaxies.

Compared to previous models, the relation between the orbits of the central black holes and the realistic structure of the parent galaxies was factored into the present simulation. “Our calculations therefore allow a robust forecast for the merging rate of supermassive black holes in the early stage of the universe,” explains Mayer. “They may help assess the gravitational waves eLISA is bound to find in the near future more effectively.”

Literature:
Fazeel Mahmood Khan, Davide Fiacconi, Lucio Mayer, Peter Berczik und Andreas Just. Swift Coalescence of Supermassive Black Holes in Cosmological Mergers of Massive Galaxies. Astrophysical Journal, 2. September 2016. arXiv:1604.00015

LISA symposium at the University of Zurich from September 5 to 9

The University of Zurich and ETH Zurich are organizing the 11th International LISA Symposium from September 5 to 9. The “who’s who” of gravitational astrophysics, high-ranking experts from the European and American space authorities and specialists from the space mission LISA will all convene on the Irchel campus to report on the extensive present tests on the LISA pathfinder mission’s technology, which have by far exceeded all expectations until now. And they will provide an outlook on the future gravitational wave observatory eLISA, which is due to be launched in 2034. Three satellites will then be sent into orbit around the sun at intervals of 1 million kilometers to track gravitational waves at a very low frequency range with the aid of laser beams. http://www.physik.uzh.ch/events/lisa2016/

Weitere Informationen:

http://www.media.uzh.ch/en/Press-Releases/2016/Calculate-gravitational-waves.htm...

Melanie Nyfeler | Universität Zürich

More articles from Physics and Astronomy:

nachricht Seeing the quantum future... literally
16.01.2017 | University of Sydney

nachricht Airborne thermometer to measure Arctic temperatures
11.01.2017 | Moscow Institute of Physics and Technology

All articles from Physics and Astronomy >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Designing Architecture with Solar Building Envelopes

Among the general public, solar thermal energy is currently associated with dark blue, rectangular collectors on building roofs. Technologies are needed for aesthetically high quality architecture which offer the architect more room for manoeuvre when it comes to low- and plus-energy buildings. With the “ArKol” project, researchers at Fraunhofer ISE together with partners are currently developing two façade collectors for solar thermal energy generation, which permit a high degree of design flexibility: a strip collector for opaque façade sections and a solar thermal blind for transparent sections. The current state of the two developments will be presented at the BAU 2017 trade fair.

As part of the “ArKol – development of architecturally highly integrated façade collectors with heat pipes” project, Fraunhofer ISE together with its partners...

Im Focus: How to inflate a hardened concrete shell with a weight of 80 t

At TU Wien, an alternative for resource intensive formwork for the construction of concrete domes was developed. It is now used in a test dome for the Austrian Federal Railways Infrastructure (ÖBB Infrastruktur).

Concrete shells are efficient structures, but not very resource efficient. The formwork for the construction of concrete domes alone requires a high amount of...

Im Focus: Bacterial Pac Man molecule snaps at sugar

Many pathogens use certain sugar compounds from their host to help conceal themselves against the immune system. Scientists at the University of Bonn have now, in cooperation with researchers at the University of York in the United Kingdom, analyzed the dynamics of a bacterial molecule that is involved in this process. They demonstrate that the protein grabs onto the sugar molecule with a Pac Man-like chewing motion and holds it until it can be used. Their results could help design therapeutics that could make the protein poorer at grabbing and holding and hence compromise the pathogen in the host. The study has now been published in “Biophysical Journal”.

The cells of the mouth, nose and intestinal mucosa produce large quantities of a chemical called sialic acid. Many bacteria possess a special transport system...

Im Focus: Newly proposed reference datasets improve weather satellite data quality

UMD, NOAA collaboration demonstrates suitability of in-orbit datasets for weather satellite calibration

"Traffic and weather, together on the hour!" blasts your local radio station, while your smartphone knows the weather halfway across the world. A network of...

Im Focus: Repairing defects in fiber-reinforced plastics more efficiently

Fiber-reinforced plastics (FRP) are frequently used in the aeronautic and automobile industry. However, the repair of workpieces made of these composite materials is often less profitable than exchanging the part. In order to increase the lifetime of FRP parts and to make them more eco-efficient, the Laser Zentrum Hannover e.V. (LZH) and the Apodius GmbH want to combine a new measuring device for fiber layer orientation with an innovative laser-based repair process.

Defects in FRP pieces may be production or operation-related. Whether or not repair is cost-effective depends on the geometry of the defective area, the tools...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

12V, 48V, high-voltage – trends in E/E automotive architecture

10.01.2017 | Event News

2nd Conference on Non-Textual Information on 10 and 11 May 2017 in Hannover

09.01.2017 | Event News

Nothing will happen without batteries making it happen!

05.01.2017 | Event News

 
Latest News

Multiregional brain on a chip

16.01.2017 | Power and Electrical Engineering

New technology enables 5-D imaging in live animals, humans

16.01.2017 | Information Technology

Researchers develop environmentally friendly soy air filter

16.01.2017 | Power and Electrical Engineering

VideoLinks
B2B-VideoLinks
More VideoLinks >>>