Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

First gravitational waves form after 10 million years

06.09.2016

If two galaxies collide, the merging of their central black holes triggers gravitational waves, which ripple throughout space. An international research team involving the University of Zurich has now calculated that this occurs around 10 million years after the two galaxies merge – much faster than previously assumed.

In his General Theory of Relativity, Albert Einstein predicted gravitational waves over a century ago; this year, they were detected directly for the first time: The American Gravitational Wave Observatory LIGO recorded such curvatures in space from Earth, which were caused by the merging of two massive black holes.


This simulation shows how two galaxies merge over a period of 15 millionen years. The red and the blue dots illustrate the two black holes.

Image: Astrophysical Journal

And the research on gravitational waves – and thus the origin of the universe – continues: From 2034 three satellites are to be launched into space in a project headed by the European Space Agency (ESA) to measure gravitational waves at even lower frequency ranges from space using the Evolved Laser Interferometer Space Antenna (eLISA).

Until now, however, it was not possible to conclusively predict the point at which gravitational waves are triggered and spread throughout space when galaxies merge. An international team of astrophysicists from the University of Zurich, the Institute of Space Technology Islamabad, the University of Heidelberg and the Chinese Academy of Sciences has now calculated this for the first time using an extensive simulation.

Much faster than previously assumed

Every galaxy has a supermassive black hole at its core, which can exhibit millions or even billions of solar masses. In a realistic simulation of the universe, the merging of two roughly 3-billion-year-old galaxies lying relatively close to one another was simulated. With the aid of supercomputers, the researchers calculated the time the two central black holes with around 100 million solar masses needed to emit strong gravitational waves after the galaxies collided.

“The result is surprising,” explains Lucio Mayer from the Institute for Computational Science of the University of Zurich: “The merging of the two black holes already triggered the first gravitational waves after 10 million years – around 100 times faster than previously assumed.”

Year-long supercomputer calculation

The computer simulation, which took more than a year, was conducted in China, Zurich and Heidelberg. The project required an innovative computational approach with various numerical codes on different supercomputers. In the process, each supercomputer was responsible for calculating a certain phase of the orbital convergence of the two massive black holes and their parent galaxies.

Compared to previous models, the relation between the orbits of the central black holes and the realistic structure of the parent galaxies was factored into the present simulation. “Our calculations therefore allow a robust forecast for the merging rate of supermassive black holes in the early stage of the universe,” explains Mayer. “They may help assess the gravitational waves eLISA is bound to find in the near future more effectively.”

Literature:
Fazeel Mahmood Khan, Davide Fiacconi, Lucio Mayer, Peter Berczik und Andreas Just. Swift Coalescence of Supermassive Black Holes in Cosmological Mergers of Massive Galaxies. Astrophysical Journal, 2. September 2016. arXiv:1604.00015

LISA symposium at the University of Zurich from September 5 to 9

The University of Zurich and ETH Zurich are organizing the 11th International LISA Symposium from September 5 to 9. The “who’s who” of gravitational astrophysics, high-ranking experts from the European and American space authorities and specialists from the space mission LISA will all convene on the Irchel campus to report on the extensive present tests on the LISA pathfinder mission’s technology, which have by far exceeded all expectations until now. And they will provide an outlook on the future gravitational wave observatory eLISA, which is due to be launched in 2034. Three satellites will then be sent into orbit around the sun at intervals of 1 million kilometers to track gravitational waves at a very low frequency range with the aid of laser beams. http://www.physik.uzh.ch/events/lisa2016/

Weitere Informationen:

http://www.media.uzh.ch/en/Press-Releases/2016/Calculate-gravitational-waves.htm...

Melanie Nyfeler | Universität Zürich

More articles from Physics and Astronomy:

nachricht From rocks in Colorado, evidence of a 'chaotic solar system'
23.02.2017 | University of Wisconsin-Madison

nachricht Prediction: More gas-giants will be found orbiting Sun-like stars
22.02.2017 | Carnegie Institution for Science

All articles from Physics and Astronomy >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Breakthrough with a chain of gold atoms

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

Im Focus: DNA repair: a new letter in the cell alphabet

Results reveal how discoveries may be hidden in scientific “blind spots”

Cells need to repair damaged DNA in our genes to prevent the development of cancer and other diseases. Our cells therefore activate and send “repair-proteins”...

Im Focus: Dresdner scientists print tomorrow’s world

The Fraunhofer IWS Dresden and Technische Universität Dresden inaugurated their jointly operated Center for Additive Manufacturing Dresden (AMCD) with a festive ceremony on February 7, 2017. Scientists from various disciplines perform research on materials, additive manufacturing processes and innovative technologies, which build up components in a layer by layer process. This technology opens up new horizons for component design and combinations of functions. For example during fabrication, electrical conductors and sensors are already able to be additively manufactured into components. They provide information about stress conditions of a product during operation.

The 3D-printing technology, or additive manufacturing as it is often called, has long made the step out of scientific research laboratories into industrial...

Im Focus: Mimicking nature's cellular architectures via 3-D printing

Research offers new level of control over the structure of 3-D printed materials

Nature does amazing things with limited design materials. Grass, for example, can support its own weight, resist strong wind loads, and recover after being...

Im Focus: Three Magnetic States for Each Hole

Nanometer-scale magnetic perforated grids could create new possibilities for computing. Together with international colleagues, scientists from the Helmholtz Zentrum Dresden-Rossendorf (HZDR) have shown how a cobalt grid can be reliably programmed at room temperature. In addition they discovered that for every hole ("antidot") three magnetic states can be configured. The results have been published in the journal "Scientific Reports".

Physicist Dr. Rantej Bali from the HZDR, together with scientists from Singapore and Australia, designed a special grid structure in a thin layer of cobalt in...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Booth and panel discussion – The Lindau Nobel Laureate Meetings at the AAAS 2017 Annual Meeting

13.02.2017 | Event News

Complex Loading versus Hidden Reserves

10.02.2017 | Event News

International Conference on Crystal Growth in Freiburg

09.02.2017 | Event News

 
Latest News

Stingless bees have their nests protected by soldiers

24.02.2017 | Life Sciences

New risk factors for anxiety disorders

24.02.2017 | Life Sciences

MWC 2017: 5G Capital Berlin

24.02.2017 | Trade Fair News

VideoLinks
B2B-VideoLinks
More VideoLinks >>>