Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Fire and water reveal new archaeological dating method

22.05.2009
Scientists at The University of Manchester have developed a new way of dating archaeological objects – using fire and water to unlock their 'internal clocks'.

The simple method promises to be as significant a technique for dating ceramic materials as radiocarbon dating has become for organic materials such as bone or wood.

A team from The University of Manchester and The University of Edinburgh has discovered a new technique which they call 'rehydroxylation dating' that can be used on fired clay ceramics like bricks, tile and pottery.

Working with The Museum of London, the team has been able to date brick samples from Roman, medieval and modern periods with remarkable accuracy.

They have established that their technique can be used to determine the age of objects up to 2,000 years old – but believe it has the potential to be used to date objects around 10,000 years old.

The exciting new findings have been published online today (20 May 2009) by the Proceedings of the Royal Society A.

The method relies on the fact that fired clay ceramic material will start to chemically react with atmospheric moisture as soon as it is removed from the kiln after firing. This continues over its lifetime causing it to increase in weight – the older the material, the greater the weight gain.

In 2003 the Manchester and Edinburgh team discovered a new law that precisely defines how the rate of reaction between ceramic and water varies over time.

The application of this law underpins the new dating method because the amount of water that is chemically combined with a ceramic provides an 'internal clock' that can be accessed to determine its age.

The technique involves measuring the mass of a sample of ceramic and then heating it to around 500 degrees Celsius in a furnace, which removes the water.

The sample is then monitored in a super-accurate measuring device known as a microbalance, to determine the precise rate at which the ceramic will combine with water over time.

Using the time law, it is possible to extrapolate the information collected to calculate the time it will take to regain the mass lost on heating – revealing the sample's age.

Lead author Dr Moira Wilson, Senior Lecturer in the School of Mechanical, Aerospace and Civil Engineering (MACE), said: "These findings come after many years of hard work. We are extremely excited by the potential of this new technique, which could become an established way of determining the age of ceramic artefacts of archaeological interest.

"The method could also be turned on its head and used to establish the mean temperature of a material over its lifetime, if a precise date of firing were known. This could potentially be useful in climate change studies.

"As well as the new dating method, there are also more wide-ranging applications of the work, such as the detection of forged ceramic."

The three-year £100,000 project was funded by the Leverhulme Trust, with the microbalance - which measures mass to 1/10th of a millionth of a gram – funded by a £66,000 grant from the Engineering and Physical Science Research Council (EPSRC).

Researchers are now planning to look at whether the new dating technique can be applied to earthenware, bone china and porcelain.

The paper, entitled 'Dating fired-clay ceramics using long-term power-law rehydroxylation kinetics' has been published online and is due to appear in a future edition of Proceedings of the Royal Society A. A copy of the paper is available on request.

The full research team comprised Dr Moira Wilson, Dr Margaret Carter, Prof William Hoff, Ceren Ince, Shaun Savage and Bernard McKay from The University of Manchester, Professor Chris Hall from the School of Engineering and Centre for Materials Science and Engineering at The University of Edinburgh and Ian Betts from The Museum of London.

The Canterbury Archaeological Trust provided additional samples and information for the study while Ibstock Brick Ltd provided kiln-fresh bricks.

Alex Waddington | EurekAlert!
Further information:
http://www.manchester.ac.uk

More articles from Physics and Astronomy:

nachricht Engineering team images tiny quasicrystals as they form
18.08.2017 | Cornell University

nachricht Astrophysicists explain the mysterious behavior of cosmic rays
18.08.2017 | Moscow Institute of Physics and Technology

All articles from Physics and Astronomy >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Fizzy soda water could be key to clean manufacture of flat wonder material: Graphene

Whether you call it effervescent, fizzy, or sparkling, carbonated water is making a comeback as a beverage. Aside from quenching thirst, researchers at the University of Illinois at Urbana-Champaign have discovered a new use for these "bubbly" concoctions that will have major impact on the manufacturer of the world's thinnest, flattest, and one most useful materials -- graphene.

As graphene's popularity grows as an advanced "wonder" material, the speed and quality at which it can be manufactured will be paramount. With that in mind,...

Im Focus: Exotic quantum states made from light: Physicists create optical “wells” for a super-photon

Physicists at the University of Bonn have managed to create optical hollows and more complex patterns into which the light of a Bose-Einstein condensate flows. The creation of such highly low-loss structures for light is a prerequisite for complex light circuits, such as for quantum information processing for a new generation of computers. The researchers are now presenting their results in the journal Nature Photonics.

Light particles (photons) occur as tiny, indivisible portions. Many thousands of these light portions can be merged to form a single super-photon if they are...

Im Focus: Circular RNA linked to brain function

For the first time, scientists have shown that circular RNA is linked to brain function. When a RNA molecule called Cdr1as was deleted from the genome of mice, the animals had problems filtering out unnecessary information – like patients suffering from neuropsychiatric disorders.

While hundreds of circular RNAs (circRNAs) are abundant in mammalian brains, one big question has remained unanswered: What are they actually good for? In the...

Im Focus: RAVAN CubeSat measures Earth's outgoing energy

An experimental small satellite has successfully collected and delivered data on a key measurement for predicting changes in Earth's climate.

The Radiometer Assessment using Vertically Aligned Nanotubes (RAVAN) CubeSat was launched into low-Earth orbit on Nov. 11, 2016, in order to test new...

Im Focus: Scientists shine new light on the “other high temperature superconductor”

A study led by scientists of the Max Planck Institute for the Structure and Dynamics of Matter (MPSD) at the Center for Free-Electron Laser Science in Hamburg presents evidence of the coexistence of superconductivity and “charge-density-waves” in compounds of the poorly-studied family of bismuthates. This observation opens up new perspectives for a deeper understanding of the phenomenon of high-temperature superconductivity, a topic which is at the core of condensed matter research since more than 30 years. The paper by Nicoletti et al has been published in the PNAS.

Since the beginning of the 20th century, superconductivity had been observed in some metals at temperatures only a few degrees above the absolute zero (minus...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Call for Papers – ICNFT 2018, 5th International Conference on New Forming Technology

16.08.2017 | Event News

Sustainability is the business model of tomorrow

04.08.2017 | Event News

Clash of Realities 2017: Registration now open. International Conference at TH Köln

26.07.2017 | Event News

 
Latest News

A Map of the Cell’s Power Station

18.08.2017 | Life Sciences

Engineering team images tiny quasicrystals as they form

18.08.2017 | Physics and Astronomy

Researchers printed graphene-like materials with inkjet

18.08.2017 | Materials Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>