Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Findings show promise for nuclear fusion test reactors

28.07.2010
Researchers have discovered mechanisms critical to interactions between hot plasma and surfaces facing the plasma inside a thermonuclear fusion reactor, part of work aimed at developing coatings capable of withstanding the grueling conditions inside the reactors.

Fusion powers the stars and could lead to a limitless supply of clean energy. A fusion power plant would produce 10 times more energy than a conventional nuclear fission reactor, and because the deuterium fuel is contained in seawater, a fusion reactor's fuel supply would be virtually inexhaustible.

Research at Purdue University focuses on the "plasma-material interface," a crucial region where the inner lining of a fusion reactor comes into contact with the extreme heat of the plasma. Nuclear and materials engineers are harnessing nanotechnology to define tiny features in the coating in work aimed at creating new "plasma-facing" materials tolerant to radiation damage, said Jean Paul Allain, an assistant professor of nuclear engineering.

One lining being considered uses lithium, which is applied to the inner graphite wall of the reactor and diffuses into the graphite, creating an entirely new material called lithiated graphite. The lithiated graphite binds to deuterium atoms in fuel inside fusion reactors known as tokamaks. The machines house a magnetic field to confine a donut-shaped plasma of deuterium, an isotope of hydrogen.

During a fusion reaction, some of the deuterium atoms strike the inner walls of the reactor and are either "pumped," causing them to bind with the lithiated graphite, or returned to the core and recycled back to the plasma. This process can be "tuned" by these liners to control how much deuterium fuel is retained.

"We now have an understanding of how the lithiated graphite controls the recycling of hydrogen," Allain said. "This is the first time that anyone has looked systematically at the chemistry and physics of pumping by the lithiated graphite. We are learning, at the atomic level, exactly how it is pumped and what dictates the binding of deuterium in this lithiated graphite. So we now have improved insight on how to recondition the surfaces of the tokamak."

Findings have been detailed in two research papers presented during the 19th International Conference on Plasma-Surface Interactions in May, and another paper will be presented during the Fusion Nuclear Science and Technology/Plasma Facing Components meeting on Aug. 2-6 at the University of California at Los Angeles.

Purdue is working with researches at Princeton University in the Princeton Plasma Physics Laboratory, which operates the nation's only spherical tokamak reactor, known as the National Spherical Torus Experiment. The machines are ideal for materials testing.

A major challenge in finding the right coatings to line fusion reactors is that the material changes due to extreme conditions inside the reactors, where temperatures reach millions of degrees. The energy causes tiny micro- and nano-scale features to "self-organize" on the surface of the lithiated graphite under normal plasma-surface interaction conditions. But the surface only continues this pumping action for a few seconds before being compromised by damage induced by the extreme internal conditions, so researchers are trying to improve the material durability, Allain said.

"The key is to understand how to exploit these self-organizing structures and patterns to provide the recycling and also to self-heal, or replenish the pumping conditions we started with," he said.

Allain's group is working at Purdue's Birck Nanotechnology Center to analyze tiles used in the Princeton Plasma Physics Laboratory tokamak.

The Purdue team also will study materials inserted into the tokamak using a special "plasma-materials interface probe." The materials will then be studied at the Princeton laboratory using a specialized "in situ surface analysis facility laboratory" that will be assembled at Purdue and transported to Princeton later this summer.

"We will bring the samples in and study them right there, and we will be able to do the characterization in real time to see what happens to the surfaces," Allain said. "We're also going to use computational modeling to connect the fundamental physics learned in our experiments and what we observe inside the tokamak."

Data from the analyses will be used to validate the models.

The research involves doctoral student Chase Taylor and graduate student Bryan Heim. The project is funded by the U.S. Department of Energy through the DOE's Office of Fusion Energy Sciences.

Future work will include research to study the role played by specific textures, the nanometer-scale structures formed in the tokamak linings.

One of the research papers presented during the 19th International Conference on Plasma-Surface Interactions was written by Taylor; Heim; Osman El-Atwani, a Purdue doctoral student in the School of Materials Engineering; Allain; and colleagues from the Princeton Plasma Physics Laboratory: Charles H. Skinner, Lane Roquemore and Henry W. Kugel. In addition, atomistic modeling is conducted in collaboration with Predrag Krstic, a physicist from the Oak Ridge National Laboratory.

The other paper was written by Martin Nieto-Perez, a scientist at CICATA-IPN in Queretaro, Mexico, along with Taylor, Heim and Allain. Taylor, Heim and El-Atwani are Allain's students in his Radiation Surface Science and Engineering Laboratory.

The paper to be presented during the Fusion Nuclear Science and Technology/Plasma Facing Components meeting in August will be presented by Allain and Taylor.

Writer: Emil Venere, 765-494-4709, venere@purdjue.edu
Source: Jean Paul Allain, 765 496-9718, allain@purdue.edu
Note to Journalists: An electronic copy of the research paper is available from Emil Venere, 765-494-4709, venere@purdue.edu

Emil Venere | EurekAlert!
Further information:
http://www.purdjue.edu

More articles from Physics and Astronomy:

nachricht SwRI-led team discovers lull in Mars' giant impact history
26.04.2017 | Southwest Research Institute

nachricht New survey hints at exotic origin for the Cold Spot
26.04.2017 | Royal Astronomical Society

All articles from Physics and Astronomy >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Making lightweight construction suitable for series production

More and more automobile companies are focusing on body parts made of carbon fiber reinforced plastics (CFRP). However, manufacturing and repair costs must be further reduced in order to make CFRP more economical in use. Together with the Volkswagen AG and five other partners in the project HolQueSt 3D, the Laser Zentrum Hannover e.V. (LZH) has developed laser processes for the automatic trimming, drilling and repair of three-dimensional components.

Automated manufacturing processes are the basis for ultimately establishing the series production of CFRP components. In the project HolQueSt 3D, the LZH has...

Im Focus: Wonder material? Novel nanotube structure strengthens thin films for flexible electronics

Reflecting the structure of composites found in nature and the ancient world, researchers at the University of Illinois at Urbana-Champaign have synthesized thin carbon nanotube (CNT) textiles that exhibit both high electrical conductivity and a level of toughness that is about fifty times higher than copper films, currently used in electronics.

"The structural robustness of thin metal films has significant importance for the reliable operation of smart skin and flexible electronics including...

Im Focus: Deep inside Galaxy M87

The nearby, giant radio galaxy M87 hosts a supermassive black hole (BH) and is well-known for its bright jet dominating the spectrum over ten orders of magnitude in frequency. Due to its proximity, jet prominence, and the large black hole mass, M87 is the best laboratory for investigating the formation, acceleration, and collimation of relativistic jets. A research team led by Silke Britzen from the Max Planck Institute for Radio Astronomy in Bonn, Germany, has found strong indication for turbulent processes connecting the accretion disk and the jet of that galaxy providing insights into the longstanding problem of the origin of astrophysical jets.

Supermassive black holes form some of the most enigmatic phenomena in astrophysics. Their enormous energy output is supposed to be generated by the...

Im Focus: A Quantum Low Pass for Photons

Physicists in Garching observe novel quantum effect that limits the number of emitted photons.

The probability to find a certain number of photons inside a laser pulse usually corresponds to a classical distribution of independent events, the so-called...

Im Focus: Microprocessors based on a layer of just three atoms

Microprocessors based on atomically thin materials hold the promise of the evolution of traditional processors as well as new applications in the field of flexible electronics. Now, a TU Wien research team led by Thomas Müller has made a breakthrough in this field as part of an ongoing research project.

Two-dimensional materials, or 2D materials for short, are extremely versatile, although – or often more precisely because – they are made up of just one or a...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Expert meeting “Health Business Connect” will connect international medical technology companies

20.04.2017 | Event News

Wenn der Computer das Gehirn austrickst

18.04.2017 | Event News

7th International Conference on Crystalline Silicon Photovoltaics in Freiburg on April 3-5, 2017

03.04.2017 | Event News

 
Latest News

Scientist invents way to trigger artificial photosynthesis to clean air

26.04.2017 | Materials Sciences

Ammonium nitrogen input increases the synthesis of anticarcinogenic compounds in broccoli

26.04.2017 | Agricultural and Forestry Science

SwRI-led team discovers lull in Mars' giant impact history

26.04.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>