Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Findings show promise for nuclear fusion test reactors

28.07.2010
Researchers have discovered mechanisms critical to interactions between hot plasma and surfaces facing the plasma inside a thermonuclear fusion reactor, part of work aimed at developing coatings capable of withstanding the grueling conditions inside the reactors.

Fusion powers the stars and could lead to a limitless supply of clean energy. A fusion power plant would produce 10 times more energy than a conventional nuclear fission reactor, and because the deuterium fuel is contained in seawater, a fusion reactor's fuel supply would be virtually inexhaustible.

Research at Purdue University focuses on the "plasma-material interface," a crucial region where the inner lining of a fusion reactor comes into contact with the extreme heat of the plasma. Nuclear and materials engineers are harnessing nanotechnology to define tiny features in the coating in work aimed at creating new "plasma-facing" materials tolerant to radiation damage, said Jean Paul Allain, an assistant professor of nuclear engineering.

One lining being considered uses lithium, which is applied to the inner graphite wall of the reactor and diffuses into the graphite, creating an entirely new material called lithiated graphite. The lithiated graphite binds to deuterium atoms in fuel inside fusion reactors known as tokamaks. The machines house a magnetic field to confine a donut-shaped plasma of deuterium, an isotope of hydrogen.

During a fusion reaction, some of the deuterium atoms strike the inner walls of the reactor and are either "pumped," causing them to bind with the lithiated graphite, or returned to the core and recycled back to the plasma. This process can be "tuned" by these liners to control how much deuterium fuel is retained.

"We now have an understanding of how the lithiated graphite controls the recycling of hydrogen," Allain said. "This is the first time that anyone has looked systematically at the chemistry and physics of pumping by the lithiated graphite. We are learning, at the atomic level, exactly how it is pumped and what dictates the binding of deuterium in this lithiated graphite. So we now have improved insight on how to recondition the surfaces of the tokamak."

Findings have been detailed in two research papers presented during the 19th International Conference on Plasma-Surface Interactions in May, and another paper will be presented during the Fusion Nuclear Science and Technology/Plasma Facing Components meeting on Aug. 2-6 at the University of California at Los Angeles.

Purdue is working with researches at Princeton University in the Princeton Plasma Physics Laboratory, which operates the nation's only spherical tokamak reactor, known as the National Spherical Torus Experiment. The machines are ideal for materials testing.

A major challenge in finding the right coatings to line fusion reactors is that the material changes due to extreme conditions inside the reactors, where temperatures reach millions of degrees. The energy causes tiny micro- and nano-scale features to "self-organize" on the surface of the lithiated graphite under normal plasma-surface interaction conditions. But the surface only continues this pumping action for a few seconds before being compromised by damage induced by the extreme internal conditions, so researchers are trying to improve the material durability, Allain said.

"The key is to understand how to exploit these self-organizing structures and patterns to provide the recycling and also to self-heal, or replenish the pumping conditions we started with," he said.

Allain's group is working at Purdue's Birck Nanotechnology Center to analyze tiles used in the Princeton Plasma Physics Laboratory tokamak.

The Purdue team also will study materials inserted into the tokamak using a special "plasma-materials interface probe." The materials will then be studied at the Princeton laboratory using a specialized "in situ surface analysis facility laboratory" that will be assembled at Purdue and transported to Princeton later this summer.

"We will bring the samples in and study them right there, and we will be able to do the characterization in real time to see what happens to the surfaces," Allain said. "We're also going to use computational modeling to connect the fundamental physics learned in our experiments and what we observe inside the tokamak."

Data from the analyses will be used to validate the models.

The research involves doctoral student Chase Taylor and graduate student Bryan Heim. The project is funded by the U.S. Department of Energy through the DOE's Office of Fusion Energy Sciences.

Future work will include research to study the role played by specific textures, the nanometer-scale structures formed in the tokamak linings.

One of the research papers presented during the 19th International Conference on Plasma-Surface Interactions was written by Taylor; Heim; Osman El-Atwani, a Purdue doctoral student in the School of Materials Engineering; Allain; and colleagues from the Princeton Plasma Physics Laboratory: Charles H. Skinner, Lane Roquemore and Henry W. Kugel. In addition, atomistic modeling is conducted in collaboration with Predrag Krstic, a physicist from the Oak Ridge National Laboratory.

The other paper was written by Martin Nieto-Perez, a scientist at CICATA-IPN in Queretaro, Mexico, along with Taylor, Heim and Allain. Taylor, Heim and El-Atwani are Allain's students in his Radiation Surface Science and Engineering Laboratory.

The paper to be presented during the Fusion Nuclear Science and Technology/Plasma Facing Components meeting in August will be presented by Allain and Taylor.

Writer: Emil Venere, 765-494-4709, venere@purdjue.edu
Source: Jean Paul Allain, 765 496-9718, allain@purdue.edu
Note to Journalists: An electronic copy of the research paper is available from Emil Venere, 765-494-4709, venere@purdue.edu

Emil Venere | EurekAlert!
Further information:
http://www.purdjue.edu

More articles from Physics and Astronomy:

nachricht Breaking the optical bandwidth record of stable pulsed lasers
24.01.2017 | Institut national de la recherche scientifique - INRS

nachricht European XFEL prepares for user operation: Researchers can hand in first proposals for experiments
24.01.2017 | European XFEL GmbH

All articles from Physics and Astronomy >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Scientists spin artificial silk from whey protein

X-ray study throws light on key process for production

A Swedish-German team of researchers has cleared up a key process for the artificial production of silk. With the help of the intense X-rays from DESY's...

Im Focus: Quantum optical sensor for the first time tested in space – with a laser system from Berlin

For the first time ever, a cloud of ultra-cold atoms has been successfully created in space on board of a sounding rocket. The MAIUS mission demonstrates that quantum optical sensors can be operated even in harsh environments like space – a prerequi-site for finding answers to the most challenging questions of fundamental physics and an important innovation driver for everyday applications.

According to Albert Einstein's Equivalence Principle, all bodies are accelerated at the same rate by the Earth's gravity, regardless of their properties. This...

Im Focus: Traffic jam in empty space

New success for Konstanz physicists in studying the quantum vacuum

An important step towards a completely new experimental access to quantum physics has been made at University of Konstanz. The team of scientists headed by...

Im Focus: How gut bacteria can make us ill

HZI researchers decipher infection mechanisms of Yersinia and immune responses of the host

Yersiniae cause severe intestinal infections. Studies using Yersinia pseudotuberculosis as a model organism aim to elucidate the infection mechanisms of these...

Im Focus: Interfacial Superconductivity: Magnetic and superconducting order revealed simultaneously

Researchers from the University of Hamburg in Germany, in collaboration with colleagues from the University of Aarhus in Denmark, have synthesized a new superconducting material by growing a few layers of an antiferromagnetic transition-metal chalcogenide on a bismuth-based topological insulator, both being non-superconducting materials.

While superconductivity and magnetism are generally believed to be mutually exclusive, surprisingly, in this new material, superconducting correlations...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Sustainable Water use in Agriculture in Eastern Europe and Central Asia

19.01.2017 | Event News

12V, 48V, high-voltage – trends in E/E automotive architecture

10.01.2017 | Event News

2nd Conference on Non-Textual Information on 10 and 11 May 2017 in Hannover

09.01.2017 | Event News

 
Latest News

Breaking the optical bandwidth record of stable pulsed lasers

24.01.2017 | Physics and Astronomy

Choreographing the microRNA-target dance

24.01.2017 | Life Sciences

Spanish scientists create a 3-D bioprinter to print human skin

24.01.2017 | Health and Medicine

VideoLinks
B2B-VideoLinks
More VideoLinks >>>