New findings on the birth of the solar system

The team has found that radioactive nuclei found in the earliest meteorites, dating back billions of years, could have been delivered by a nearby dying giant star of six times the mass of the sun.

Dr Lugaro said the findings could change our current ideas on the origin of the solar system.

“We have known about the early presence of these radioactive nuclei in meteorites since the 1960s, but we do not know where they originated from. The presence of the radioactive nuclei has been previously linked to a nearby supernova explosion, but we are showing now that these nuclei are more compatible with an origin from the winds coming from a large dying star,” Dr Lugaro said.

The conclusion was reached by combining stellar observations from telescopes with recently developed theoretical models reproduced on powerful computers of how stars evolve and which nuclear reaction occurs within their interiors.

“We need to know if the presence of radioactive nuclei in young planetary systems is a common or a special event in our galaxy because their presence affected the evolution of the first large rocks (the parent bodies of asteroids and meteorites) in the solar system. These are believed to be the source of much of earth's water, which is essential for life,” Dr Lugaro said.

“Within one million years of the formation of the solar system the radioactive nuclei decayed inside the rocks where they were trapped, releasing high-energy photons, which caused the rocks to heat. Since much of earth's water is believed to have originated from these first rocks, the possibility of life on earth depends on their heating history and, in turn, on the presence of radioactive nuclei.” Dr Lugaro said.

“What we need to do now is investigate the probability that a dying giant star could have actually been nearby our then young solar system and polluted it with radioactive nuclei. This will inform us on the place where the solar system was born, on the probability that other young planetary system also are polluted with radioactive nuclei, and, eventually, on the probability of having water on terrestrial planets in other planetary systems.”

Dr Maria Lugaro (Monash University) pursued this research in collaboration with Amanda Karakas (Mount Stromlo Observatory), Mark van Raai (Utrecht University), and Spanish researchers Josep Maria Trigo-Rodriguez (CSIC and Instituto de Estudios Espaciales de Cataluña), Aníbal García-Hernández and Arturo Manchado, (Instituto de Astrofísica de Canarias), and Pedro García Lario (European Space Astronomy Center in Madrid).

The findings have been published in the journal Meteoritic & Planetary Science.

Dr Maria Lugaro can be contacted for interview on +61 3 9905 1640 or 0432 918 150

For more information or to obtain a copy of the paper, please contact Samantha Blair, Media & Communications on +61 3 9903 4841 or 0439 013 951.

Media Contact

Samantha Blair EurekAlert!

More Information:

http://www.monash.edu.au

All latest news from the category: Physics and Astronomy

This area deals with the fundamental laws and building blocks of nature and how they interact, the properties and the behavior of matter, and research into space and time and their structures.

innovations-report provides in-depth reports and articles on subjects such as astrophysics, laser technologies, nuclear, quantum, particle and solid-state physics, nanotechnologies, planetary research and findings (Mars, Venus) and developments related to the Hubble Telescope.

Back to home

Comments (0)

Write a comment

Newest articles

Lighting up the future

New multidisciplinary research from the University of St Andrews could lead to more efficient televisions, computer screens and lighting. Researchers at the Organic Semiconductor Centre in the School of Physics and…

Researchers crack sugarcane’s complex genetic code

Sweet success: Scientists created a highly accurate reference genome for one of the most important modern crops and found a rare example of how genes confer disease resistance in plants….

Evolution of the most powerful ocean current on Earth

The Antarctic Circumpolar Current plays an important part in global overturning circulation, the exchange of heat and CO2 between the ocean and atmosphere, and the stability of Antarctica’s ice sheets….

Partners & Sponsors