Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Finding solid ground

21.02.2011
Experimental evidence adds to the likelihood of the existence of supersolids, an exotic phase of matter

Supersolids and superfluids rank among the most exotic of quantum mechanical phenomena. Superfluids can flow without any viscosity, and experience no friction as they flow along the walls of a container, because their atoms ‘condense’ into a highly coherent state of matter. Supersolids are also characterized by coherent effects, but between vacancies in a crystal lattice rather than between the solid’s atoms themselves.

The reduction in the rotational inertia of a bar of solid helium-4 as it was cooled to very low temperatures provided the first experimental evidence for supersolids. Physicists interpreted the reduction to mean that some amount of supersolid helium had formed and decoupled from the remainder of the bar, affecting its rotational inertia and frequency. Others argued that the reduction in inertia resulted from a change in the helium’s viscosity and elasticity with temperature, rather than from the onset of supersolidity.

Kimitoshi Kono from the RIKEN Advanced Science Institute in Wako, Eunseong Kim from KAIST in Korea, and their colleagues from these institutes have now disproved the alternative interpretation by simultaneously measuring the shear modulus (a measure of viscosity and elasticity) and the rotational inertia of a solid helium-4 cell as its temperature dropped from 1 kelvin to 15 thousandths of a kelvin[1]. The cell was made to rotate clockwise and then counterclockwise periodically, as well as to rotate clockwise or counterclockwise continuously (Fig. 1). The continuous rotation affected the inertial mass of the helium but its shear modulus, allowing these quantities to be monitored independently.

Under continuous rotation, the degree of change in the rotational inertia had a clear dependence on rotation velocity, while the shear modulus did not. In addition, the energy dissipated by the rotation increased at high speeds. Both of these observations contrast to what would be expected if viscoelastic effects were at play, rather than supersolidity. The researchers also found that periodic rotation and continuous rotation affected the rotation differently, raising new questions about the experimental system.

The data support the interpretation that changes in the rotational inertia of helium-4 at low temperature result from supersolidity. This is important because of the novel and surprising nature of the phenomenon itself, says Kono. “Superfluidity in a solid is a very radical concept which, if proven, is certainly a good candidate for the Nobel Prize” he adds. “Therefore the first priority is to determine whether it can be proven in a fashion that will convince the low-temperature physics community.”

The corresponding author for this highlight is based at the Low Temperature Physics Laboratory, RIKEN Advanced Science Institute

Journal information

[1] Choi, H., Takahashi, D., Kono, K. & Kim, E. Evidence of supersolidity in rotating solid helium. Science 330, 1512–1515 (2010).

gro-pr | Research asia research news
Further information:
http://www.riken.jp
http://www.researchsea.com

More articles from Physics and Astronomy:

nachricht Meteoritic stardust unlocks timing of supernova dust formation
19.01.2018 | Carnegie Institution for Science

nachricht Artificial agent designs quantum experiments
19.01.2018 | Universität Innsbruck

All articles from Physics and Astronomy >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Artificial agent designs quantum experiments

On the way to an intelligent laboratory, physicists from Innsbruck and Vienna present an artificial agent that autonomously designs quantum experiments. In initial experiments, the system has independently (re)discovered experimental techniques that are nowadays standard in modern quantum optical laboratories. This shows how machines could play a more creative role in research in the future.

We carry smartphones in our pockets, the streets are dotted with semi-autonomous cars, but in the research laboratory experiments are still being designed by...

Im Focus: Scientists decipher key principle behind reaction of metalloenzymes

So-called pre-distorted states accelerate photochemical reactions too

What enables electrons to be transferred swiftly, for example during photosynthesis? An interdisciplinary team of researchers has worked out the details of how...

Im Focus: The first precise measurement of a single molecule's effective charge

For the first time, scientists have precisely measured the effective electrical charge of a single molecule in solution. This fundamental insight of an SNSF Professor could also pave the way for future medical diagnostics.

Electrical charge is one of the key properties that allows molecules to interact. Life itself depends on this phenomenon: many biological processes involve...

Im Focus: Paradigm shift in Paris: Encouraging an holistic view of laser machining

At the JEC World Composite Show in Paris in March 2018, the Fraunhofer Institute for Laser Technology ILT will be focusing on the latest trends and innovations in laser machining of composites. Among other things, researchers at the booth shared with the Aachen Center for Integrative Lightweight Production (AZL) will demonstrate how lasers can be used for joining, structuring, cutting and drilling composite materials.

No other industry has attracted as much public attention to composite materials as the automotive industry, which along with the aerospace industry is a driver...

Im Focus: Room-temperature multiferroic thin films and their properties

Scientists at Tokyo Institute of Technology (Tokyo Tech) and Tohoku University have developed high-quality GFO epitaxial films and systematically investigated their ferroelectric and ferromagnetic properties. They also demonstrated the room-temperature magnetocapacitance effects of these GFO thin films.

Multiferroic materials show magnetically driven ferroelectricity. They are attracting increasing attention because of their fascinating properties such as...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

10th International Symposium: “Advanced Battery Power – Kraftwerk Batterie” Münster, 10-11 April 2018

08.01.2018 | Event News

See, understand and experience the work of the future

11.12.2017 | Event News

Innovative strategies to tackle parasitic worms

08.12.2017 | Event News

 
Latest News

Let the good tubes roll

19.01.2018 | Materials Sciences

How cancer metastasis happens: Researchers reveal a key mechanism

19.01.2018 | Health and Medicine

Meteoritic stardust unlocks timing of supernova dust formation

19.01.2018 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>