Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Finding solid ground

21.02.2011
Experimental evidence adds to the likelihood of the existence of supersolids, an exotic phase of matter

Supersolids and superfluids rank among the most exotic of quantum mechanical phenomena. Superfluids can flow without any viscosity, and experience no friction as they flow along the walls of a container, because their atoms ‘condense’ into a highly coherent state of matter. Supersolids are also characterized by coherent effects, but between vacancies in a crystal lattice rather than between the solid’s atoms themselves.

The reduction in the rotational inertia of a bar of solid helium-4 as it was cooled to very low temperatures provided the first experimental evidence for supersolids. Physicists interpreted the reduction to mean that some amount of supersolid helium had formed and decoupled from the remainder of the bar, affecting its rotational inertia and frequency. Others argued that the reduction in inertia resulted from a change in the helium’s viscosity and elasticity with temperature, rather than from the onset of supersolidity.

Kimitoshi Kono from the RIKEN Advanced Science Institute in Wako, Eunseong Kim from KAIST in Korea, and their colleagues from these institutes have now disproved the alternative interpretation by simultaneously measuring the shear modulus (a measure of viscosity and elasticity) and the rotational inertia of a solid helium-4 cell as its temperature dropped from 1 kelvin to 15 thousandths of a kelvin[1]. The cell was made to rotate clockwise and then counterclockwise periodically, as well as to rotate clockwise or counterclockwise continuously (Fig. 1). The continuous rotation affected the inertial mass of the helium but its shear modulus, allowing these quantities to be monitored independently.

Under continuous rotation, the degree of change in the rotational inertia had a clear dependence on rotation velocity, while the shear modulus did not. In addition, the energy dissipated by the rotation increased at high speeds. Both of these observations contrast to what would be expected if viscoelastic effects were at play, rather than supersolidity. The researchers also found that periodic rotation and continuous rotation affected the rotation differently, raising new questions about the experimental system.

The data support the interpretation that changes in the rotational inertia of helium-4 at low temperature result from supersolidity. This is important because of the novel and surprising nature of the phenomenon itself, says Kono. “Superfluidity in a solid is a very radical concept which, if proven, is certainly a good candidate for the Nobel Prize” he adds. “Therefore the first priority is to determine whether it can be proven in a fashion that will convince the low-temperature physics community.”

The corresponding author for this highlight is based at the Low Temperature Physics Laboratory, RIKEN Advanced Science Institute

Journal information

[1] Choi, H., Takahashi, D., Kono, K. & Kim, E. Evidence of supersolidity in rotating solid helium. Science 330, 1512–1515 (2010).

gro-pr | Research asia research news
Further information:
http://www.riken.jp
http://www.researchsea.com

More articles from Physics and Astronomy:

nachricht A tale of two pulsars' tails: Plumes offer geometry lessons to astronomers
18.01.2017 | Penn State

nachricht Studying fundamental particles in materials
17.01.2017 | Max-Planck-Institut für Struktur und Dynamik der Materie

All articles from Physics and Astronomy >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: How gut bacteria can make us ill

HZI researchers decipher infection mechanisms of Yersinia and immune responses of the host

Yersiniae cause severe intestinal infections. Studies using Yersinia pseudotuberculosis as a model organism aim to elucidate the infection mechanisms of these...

Im Focus: Interfacial Superconductivity: Magnetic and superconducting order revealed simultaneously

Researchers from the University of Hamburg in Germany, in collaboration with colleagues from the University of Aarhus in Denmark, have synthesized a new superconducting material by growing a few layers of an antiferromagnetic transition-metal chalcogenide on a bismuth-based topological insulator, both being non-superconducting materials.

While superconductivity and magnetism are generally believed to be mutually exclusive, surprisingly, in this new material, superconducting correlations...

Im Focus: Studying fundamental particles in materials

Laser-driving of semimetals allows creating novel quasiparticle states within condensed matter systems and switching between different states on ultrafast time scales

Studying properties of fundamental particles in condensed matter systems is a promising approach to quantum field theory. Quasiparticles offer the opportunity...

Im Focus: Designing Architecture with Solar Building Envelopes

Among the general public, solar thermal energy is currently associated with dark blue, rectangular collectors on building roofs. Technologies are needed for aesthetically high quality architecture which offer the architect more room for manoeuvre when it comes to low- and plus-energy buildings. With the “ArKol” project, researchers at Fraunhofer ISE together with partners are currently developing two façade collectors for solar thermal energy generation, which permit a high degree of design flexibility: a strip collector for opaque façade sections and a solar thermal blind for transparent sections. The current state of the two developments will be presented at the BAU 2017 trade fair.

As part of the “ArKol – development of architecturally highly integrated façade collectors with heat pipes” project, Fraunhofer ISE together with its partners...

Im Focus: How to inflate a hardened concrete shell with a weight of 80 t

At TU Wien, an alternative for resource intensive formwork for the construction of concrete domes was developed. It is now used in a test dome for the Austrian Federal Railways Infrastructure (ÖBB Infrastruktur).

Concrete shells are efficient structures, but not very resource efficient. The formwork for the construction of concrete domes alone requires a high amount of...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

12V, 48V, high-voltage – trends in E/E automotive architecture

10.01.2017 | Event News

2nd Conference on Non-Textual Information on 10 and 11 May 2017 in Hannover

09.01.2017 | Event News

Nothing will happen without batteries making it happen!

05.01.2017 | Event News

 
Latest News

A big nano boost for solar cells

18.01.2017 | Power and Electrical Engineering

Glass's off-kilter harmonies

18.01.2017 | Materials Sciences

Toward a 'smart' patch that automatically delivers insulin when needed

18.01.2017 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>