Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Finding ET may require giant robotic leap

19.04.2012
Autonomous, self-replicating robots -- exobots -- are the way to explore the universe, find and identify extraterrestrial life and perhaps clean up space debris in the process, according to a Penn State engineer, who notes that the search for extraterrestrial intelligence -- SETI -- is in its 50th year.

"The basic premise is that human space exploration must be highly efficient, cost effective, and autonomous as placing humans beyond low Earth orbit is fraught with political economic, and technical difficulties," John D. Mathews, professor of electrical engineering, reported in the current issue of the Journal of the British Interplanetary Society.

If aliens are out there, they have the same problems we do, they need to conserve resources, are limited by the laws of physics and they may not even be eager to meet us, according to Mathews.

He suggests that "only by developing and deploying self-replicating robotic spacecraft -- and the incumbent communications systems -- can the human race efficiently explore even the asteroid belt, let alone the vast reaches of the Kuiper Belt, Oort Cloud, and beyond."

Mathews assumes that any extraterrestrial would need to follow a similar path to the stars, sending robots rather than living beings, which would explain why SETI has not succeeded to date.

"If they are like us, they too have a dysfunctional government and all the other problems plaguing us," said Mathews. "They won't want to spend a lot to communicate with us."

It is extremely difficult to broadcast into the galaxy and requires vast resources. Radio signals need to emanate in every direction to fill the sky, and the energy requirement to broadcast throughout space is quite high.

"Current infrared lasers can communicate across our solar system," said Mathews. "The problem in terms of SETI is they are highly directed beams."

Point-to-point communications using infrared signaling requires less power, but the signals are extremely directional. If ET is using laser-generated infrared signaling, we would never notice their signals because they are so tightly targeted to their destinations.

Mathews suggests that if human exploration is not possible, robots could go where many people do not want to go and do what many do not want to do, not only on Earth, but also in space.

To minimize the cost, he suggests that the initial robots be manufactured on the moon to take advantage of the resources and the one-sixth gravity. He notes that we have the technology to create these exobots now, except for a compact power source. To create a network of autonomous robots capable of passing information to each other and back to earth, the vehicles must be able to identify their exact location and determine the time. With these two bits of knowledge, they should be able to determine where all the other robots near them are and target them with an infrared laser beam carrying data.

"The expensive part of launching anything is escaping the surface of Earth and its gravity well," said Mathews. "It would also be easier to target the space debris in near Earth orbit and in geosynchronous orbit and even recycle it."

Initially, the exobots would serve two purposes: clear existing debris and monitor the more than 1,200 near Earth asteroids that are particularly hazardous in that they closely approach Earth during their orbits.

"As a first step, we really should launch robot vehicles to learn something about these asteroids and to place beacons on them for identification and tracking," said Mathews.

Ultimately, the network of exobots -- self-replicating, autonomous and capable of learning -- will spread through the solar system and into the galaxy, using the resources they find there to continue their mission. Communicating with infrared lasers is communicating at the speed of light, which is the fastest we can hope to achieve.

"Our assumption in the search for extraterrestrial intelligence is that ET wants to be found," said Mathews. "But who has energy resources to spend trying to wave their metaphorical hand across the galaxy?"

He said it is more likely that one of our exobots will intercept a signal from one of theirs if we are to make first contact.

A'ndrea Elyse Messer | EurekAlert!
Further information:
http://www.psu.edu

Further reports about: Earth's magnetic field SETI infrared lasers solar system

More articles from Physics and Astronomy:

nachricht Hope to discover sure signs of life on Mars? New research says look for the element vanadium
22.09.2017 | University of Kansas

nachricht Calculating quietness
22.09.2017 | Forschungszentrum MATHEON ECMath

All articles from Physics and Astronomy >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: The pyrenoid is a carbon-fixing liquid droplet

Plants and algae use the enzyme Rubisco to fix carbon dioxide, removing it from the atmosphere and converting it into biomass. Algae have figured out a way to increase the efficiency of carbon fixation. They gather most of their Rubisco into a ball-shaped microcompartment called the pyrenoid, which they flood with a high local concentration of carbon dioxide. A team of scientists at Princeton University, the Carnegie Institution for Science, Stanford University and the Max Plank Institute of Biochemistry have unravelled the mysteries of how the pyrenoid is assembled. These insights can help to engineer crops that remove more carbon dioxide from the atmosphere while producing more food.

A warming planet

Im Focus: Highly precise wiring in the Cerebral Cortex

Our brains house extremely complex neuronal circuits, whose detailed structures are still largely unknown. This is especially true for the so-called cerebral cortex of mammals, where among other things vision, thoughts or spatial orientation are being computed. Here the rules by which nerve cells are connected to each other are only partly understood. A team of scientists around Moritz Helmstaedter at the Frankfiurt Max Planck Institute for Brain Research and Helene Schmidt (Humboldt University in Berlin) have now discovered a surprisingly precise nerve cell connectivity pattern in the part of the cerebral cortex that is responsible for orienting the individual animal or human in space.

The researchers report online in Nature (Schmidt et al., 2017. Axonal synapse sorting in medial entorhinal cortex, DOI: 10.1038/nature24005) that synapses in...

Im Focus: Tiny lasers from a gallery of whispers

New technique promises tunable laser devices

Whispering gallery mode (WGM) resonators are used to make tiny micro-lasers, sensors, switches, routers and other devices. These tiny structures rely on a...

Im Focus: Ultrafast snapshots of relaxing electrons in solids

Using ultrafast flashes of laser and x-ray radiation, scientists at the Max Planck Institute of Quantum Optics (Garching, Germany) took snapshots of the briefest electron motion inside a solid material to date. The electron motion lasted only 750 billionths of the billionth of a second before it fainted, setting a new record of human capability to capture ultrafast processes inside solids!

When x-rays shine onto solid materials or large molecules, an electron is pushed away from its original place near the nucleus of the atom, leaving a hole...

Im Focus: Quantum Sensors Decipher Magnetic Ordering in a New Semiconducting Material

For the first time, physicists have successfully imaged spiral magnetic ordering in a multiferroic material. These materials are considered highly promising candidates for future data storage media. The researchers were able to prove their findings using unique quantum sensors that were developed at Basel University and that can analyze electromagnetic fields on the nanometer scale. The results – obtained by scientists from the University of Basel’s Department of Physics, the Swiss Nanoscience Institute, the University of Montpellier and several laboratories from University Paris-Saclay – were recently published in the journal Nature.

Multiferroics are materials that simultaneously react to electric and magnetic fields. These two properties are rarely found together, and their combined...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

“Lasers in Composites Symposium” in Aachen – from Science to Application

19.09.2017 | Event News

I-ESA 2018 – Call for Papers

12.09.2017 | Event News

EMBO at Basel Life, a new conference on current and emerging life science research

06.09.2017 | Event News

 
Latest News

Rainbow colors reveal cell history: Uncovering β-cell heterogeneity

22.09.2017 | Life Sciences

Penn first in world to treat patient with new radiation technology

22.09.2017 | Medical Engineering

Calculating quietness

22.09.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>