Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Finding ET may require giant robotic leap

19.04.2012
Autonomous, self-replicating robots -- exobots -- are the way to explore the universe, find and identify extraterrestrial life and perhaps clean up space debris in the process, according to a Penn State engineer, who notes that the search for extraterrestrial intelligence -- SETI -- is in its 50th year.

"The basic premise is that human space exploration must be highly efficient, cost effective, and autonomous as placing humans beyond low Earth orbit is fraught with political economic, and technical difficulties," John D. Mathews, professor of electrical engineering, reported in the current issue of the Journal of the British Interplanetary Society.

If aliens are out there, they have the same problems we do, they need to conserve resources, are limited by the laws of physics and they may not even be eager to meet us, according to Mathews.

He suggests that "only by developing and deploying self-replicating robotic spacecraft -- and the incumbent communications systems -- can the human race efficiently explore even the asteroid belt, let alone the vast reaches of the Kuiper Belt, Oort Cloud, and beyond."

Mathews assumes that any extraterrestrial would need to follow a similar path to the stars, sending robots rather than living beings, which would explain why SETI has not succeeded to date.

"If they are like us, they too have a dysfunctional government and all the other problems plaguing us," said Mathews. "They won't want to spend a lot to communicate with us."

It is extremely difficult to broadcast into the galaxy and requires vast resources. Radio signals need to emanate in every direction to fill the sky, and the energy requirement to broadcast throughout space is quite high.

"Current infrared lasers can communicate across our solar system," said Mathews. "The problem in terms of SETI is they are highly directed beams."

Point-to-point communications using infrared signaling requires less power, but the signals are extremely directional. If ET is using laser-generated infrared signaling, we would never notice their signals because they are so tightly targeted to their destinations.

Mathews suggests that if human exploration is not possible, robots could go where many people do not want to go and do what many do not want to do, not only on Earth, but also in space.

To minimize the cost, he suggests that the initial robots be manufactured on the moon to take advantage of the resources and the one-sixth gravity. He notes that we have the technology to create these exobots now, except for a compact power source. To create a network of autonomous robots capable of passing information to each other and back to earth, the vehicles must be able to identify their exact location and determine the time. With these two bits of knowledge, they should be able to determine where all the other robots near them are and target them with an infrared laser beam carrying data.

"The expensive part of launching anything is escaping the surface of Earth and its gravity well," said Mathews. "It would also be easier to target the space debris in near Earth orbit and in geosynchronous orbit and even recycle it."

Initially, the exobots would serve two purposes: clear existing debris and monitor the more than 1,200 near Earth asteroids that are particularly hazardous in that they closely approach Earth during their orbits.

"As a first step, we really should launch robot vehicles to learn something about these asteroids and to place beacons on them for identification and tracking," said Mathews.

Ultimately, the network of exobots -- self-replicating, autonomous and capable of learning -- will spread through the solar system and into the galaxy, using the resources they find there to continue their mission. Communicating with infrared lasers is communicating at the speed of light, which is the fastest we can hope to achieve.

"Our assumption in the search for extraterrestrial intelligence is that ET wants to be found," said Mathews. "But who has energy resources to spend trying to wave their metaphorical hand across the galaxy?"

He said it is more likely that one of our exobots will intercept a signal from one of theirs if we are to make first contact.

A'ndrea Elyse Messer | EurekAlert!
Further information:
http://www.psu.edu

Further reports about: Earth's magnetic field SETI infrared lasers solar system

More articles from Physics and Astronomy:

nachricht Seeing the quantum future... literally
16.01.2017 | University of Sydney

nachricht Airborne thermometer to measure Arctic temperatures
11.01.2017 | Moscow Institute of Physics and Technology

All articles from Physics and Astronomy >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Designing Architecture with Solar Building Envelopes

Among the general public, solar thermal energy is currently associated with dark blue, rectangular collectors on building roofs. Technologies are needed for aesthetically high quality architecture which offer the architect more room for manoeuvre when it comes to low- and plus-energy buildings. With the “ArKol” project, researchers at Fraunhofer ISE together with partners are currently developing two façade collectors for solar thermal energy generation, which permit a high degree of design flexibility: a strip collector for opaque façade sections and a solar thermal blind for transparent sections. The current state of the two developments will be presented at the BAU 2017 trade fair.

As part of the “ArKol – development of architecturally highly integrated façade collectors with heat pipes” project, Fraunhofer ISE together with its partners...

Im Focus: How to inflate a hardened concrete shell with a weight of 80 t

At TU Wien, an alternative for resource intensive formwork for the construction of concrete domes was developed. It is now used in a test dome for the Austrian Federal Railways Infrastructure (ÖBB Infrastruktur).

Concrete shells are efficient structures, but not very resource efficient. The formwork for the construction of concrete domes alone requires a high amount of...

Im Focus: Bacterial Pac Man molecule snaps at sugar

Many pathogens use certain sugar compounds from their host to help conceal themselves against the immune system. Scientists at the University of Bonn have now, in cooperation with researchers at the University of York in the United Kingdom, analyzed the dynamics of a bacterial molecule that is involved in this process. They demonstrate that the protein grabs onto the sugar molecule with a Pac Man-like chewing motion and holds it until it can be used. Their results could help design therapeutics that could make the protein poorer at grabbing and holding and hence compromise the pathogen in the host. The study has now been published in “Biophysical Journal”.

The cells of the mouth, nose and intestinal mucosa produce large quantities of a chemical called sialic acid. Many bacteria possess a special transport system...

Im Focus: Newly proposed reference datasets improve weather satellite data quality

UMD, NOAA collaboration demonstrates suitability of in-orbit datasets for weather satellite calibration

"Traffic and weather, together on the hour!" blasts your local radio station, while your smartphone knows the weather halfway across the world. A network of...

Im Focus: Repairing defects in fiber-reinforced plastics more efficiently

Fiber-reinforced plastics (FRP) are frequently used in the aeronautic and automobile industry. However, the repair of workpieces made of these composite materials is often less profitable than exchanging the part. In order to increase the lifetime of FRP parts and to make them more eco-efficient, the Laser Zentrum Hannover e.V. (LZH) and the Apodius GmbH want to combine a new measuring device for fiber layer orientation with an innovative laser-based repair process.

Defects in FRP pieces may be production or operation-related. Whether or not repair is cost-effective depends on the geometry of the defective area, the tools...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

12V, 48V, high-voltage – trends in E/E automotive architecture

10.01.2017 | Event News

2nd Conference on Non-Textual Information on 10 and 11 May 2017 in Hannover

09.01.2017 | Event News

Nothing will happen without batteries making it happen!

05.01.2017 | Event News

 
Latest News

Multiregional brain on a chip

16.01.2017 | Power and Electrical Engineering

New technology enables 5-D imaging in live animals, humans

16.01.2017 | Information Technology

Researchers develop environmentally friendly soy air filter

16.01.2017 | Power and Electrical Engineering

VideoLinks
B2B-VideoLinks
More VideoLinks >>>