Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Finding ET may require giant robotic leap

19.04.2012
Autonomous, self-replicating robots -- exobots -- are the way to explore the universe, find and identify extraterrestrial life and perhaps clean up space debris in the process, according to a Penn State engineer, who notes that the search for extraterrestrial intelligence -- SETI -- is in its 50th year.

"The basic premise is that human space exploration must be highly efficient, cost effective, and autonomous as placing humans beyond low Earth orbit is fraught with political economic, and technical difficulties," John D. Mathews, professor of electrical engineering, reported in the current issue of the Journal of the British Interplanetary Society.

If aliens are out there, they have the same problems we do, they need to conserve resources, are limited by the laws of physics and they may not even be eager to meet us, according to Mathews.

He suggests that "only by developing and deploying self-replicating robotic spacecraft -- and the incumbent communications systems -- can the human race efficiently explore even the asteroid belt, let alone the vast reaches of the Kuiper Belt, Oort Cloud, and beyond."

Mathews assumes that any extraterrestrial would need to follow a similar path to the stars, sending robots rather than living beings, which would explain why SETI has not succeeded to date.

"If they are like us, they too have a dysfunctional government and all the other problems plaguing us," said Mathews. "They won't want to spend a lot to communicate with us."

It is extremely difficult to broadcast into the galaxy and requires vast resources. Radio signals need to emanate in every direction to fill the sky, and the energy requirement to broadcast throughout space is quite high.

"Current infrared lasers can communicate across our solar system," said Mathews. "The problem in terms of SETI is they are highly directed beams."

Point-to-point communications using infrared signaling requires less power, but the signals are extremely directional. If ET is using laser-generated infrared signaling, we would never notice their signals because they are so tightly targeted to their destinations.

Mathews suggests that if human exploration is not possible, robots could go where many people do not want to go and do what many do not want to do, not only on Earth, but also in space.

To minimize the cost, he suggests that the initial robots be manufactured on the moon to take advantage of the resources and the one-sixth gravity. He notes that we have the technology to create these exobots now, except for a compact power source. To create a network of autonomous robots capable of passing information to each other and back to earth, the vehicles must be able to identify their exact location and determine the time. With these two bits of knowledge, they should be able to determine where all the other robots near them are and target them with an infrared laser beam carrying data.

"The expensive part of launching anything is escaping the surface of Earth and its gravity well," said Mathews. "It would also be easier to target the space debris in near Earth orbit and in geosynchronous orbit and even recycle it."

Initially, the exobots would serve two purposes: clear existing debris and monitor the more than 1,200 near Earth asteroids that are particularly hazardous in that they closely approach Earth during their orbits.

"As a first step, we really should launch robot vehicles to learn something about these asteroids and to place beacons on them for identification and tracking," said Mathews.

Ultimately, the network of exobots -- self-replicating, autonomous and capable of learning -- will spread through the solar system and into the galaxy, using the resources they find there to continue their mission. Communicating with infrared lasers is communicating at the speed of light, which is the fastest we can hope to achieve.

"Our assumption in the search for extraterrestrial intelligence is that ET wants to be found," said Mathews. "But who has energy resources to spend trying to wave their metaphorical hand across the galaxy?"

He said it is more likely that one of our exobots will intercept a signal from one of theirs if we are to make first contact.

A'ndrea Elyse Messer | EurekAlert!
Further information:
http://www.psu.edu

Further reports about: Earth's magnetic field SETI infrared lasers solar system

More articles from Physics and Astronomy:

nachricht Significantly more productivity in USP lasers
06.12.2016 | Fraunhofer-Institut für Lasertechnik ILT

nachricht Shape matters when light meets atom
05.12.2016 | Centre for Quantum Technologies at the National University of Singapore

All articles from Physics and Astronomy >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Shape matters when light meets atom

Mapping the interaction of a single atom with a single photon may inform design of quantum devices

Have you ever wondered how you see the world? Vision is about photons of light, which are packets of energy, interacting with the atoms or molecules in what...

Im Focus: Novel silicon etching technique crafts 3-D gradient refractive index micro-optics

A multi-institutional research collaboration has created a novel approach for fabricating three-dimensional micro-optics through the shape-defined formation of porous silicon (PSi), with broad impacts in integrated optoelectronics, imaging, and photovoltaics.

Working with colleagues at Stanford and The Dow Chemical Company, researchers at the University of Illinois at Urbana-Champaign fabricated 3-D birefringent...

Im Focus: Quantum Particles Form Droplets

In experiments with magnetic atoms conducted at extremely low temperatures, scientists have demonstrated a unique phase of matter: The atoms form a new type of quantum liquid or quantum droplet state. These so called quantum droplets may preserve their form in absence of external confinement because of quantum effects. The joint team of experimental physicists from Innsbruck and theoretical physicists from Hannover report on their findings in the journal Physical Review X.

“Our Quantum droplets are in the gas phase but they still drop like a rock,” explains experimental physicist Francesca Ferlaino when talking about the...

Im Focus: MADMAX: Max Planck Institute for Physics takes up axion research

The Max Planck Institute for Physics (MPP) is opening up a new research field. A workshop from November 21 - 22, 2016 will mark the start of activities for an innovative axion experiment. Axions are still only purely hypothetical particles. Their detection could solve two fundamental problems in particle physics: What dark matter consists of and why it has not yet been possible to directly observe a CP violation for the strong interaction.

The “MADMAX” project is the MPP’s commitment to axion research. Axions are so far only a theoretical prediction and are difficult to detect: on the one hand,...

Im Focus: Molecules change shape when wet

Broadband rotational spectroscopy unravels structural reshaping of isolated molecules in the gas phase to accommodate water

In two recent publications in the Journal of Chemical Physics and in the Journal of Physical Chemistry Letters, researchers around Melanie Schnell from the Max...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

ICTM Conference 2017: Production technology for turbomachine manufacturing of the future

16.11.2016 | Event News

Innovation Day Laser Technology – Laser Additive Manufacturing

01.11.2016 | Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

 
Latest News

Speed data for the brain’s navigation system

06.12.2016 | Health and Medicine

What happens in the cell nucleus after fertilization

06.12.2016 | Life Sciences

IHP presents the fastest silicon-based transistor in the world

05.12.2016 | Power and Electrical Engineering

VideoLinks
B2B-VideoLinks
More VideoLinks >>>