Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Finding hope in a meltdown

20.09.2010
Theoretical physicists find evidence of a new state of matter in a simple oxide

Symmetry is a fundamental concept in physics. Our ‘standard model’ of particle physics, for example, predicts that matter and anti-matter should have been created in equal amounts at the big bang, yet our existing universe is mostly matter. Such a discrepancy between the symmetry of known physical laws, and what we actually observe, are often the inspiration for realizing that new interactions are important or that new phases of matter can exist.

Shigeki Onoda, a theorist at the RIKEN Advanced Science Institute in Wako, recognized that experimentalists at The University of Tokyo had possibly discovered a new state of matter, called a ‘chiral spin liquid’ when they reported evidence of time-reversal symmetry breaking1—a difference between the trajectory of a particle moving along one path or its inverse—in the oxide called Pr2Ir2O7. If a material is magnetic, or in a magnetic field, its electrons will not obey time reversal symmetry; but in Pr2Ir2O7, neither contribution was present to explain what the experimentalists had observed.

Now, Onoda and colleague Yoichi Tanaka have explained how a chiral spin liquid could emerge from so-called ‘quantum spin fluctuations’—the motion of spins that occurs even at absolute zero2. “The possibility of a chiral spin liquid was first proposed twenty years ago and many physicists had lost hope to find it,” explains Onoda. “This is a revival of a phase that was found in a totally different system than where it was first expected.”

The interesting properties of Pr2Ir2O7 are rooted in its crystal structure, called a pyrochlore lattice: four praseodymium (Pr) ions, each of which carries a magnetic ‘spin’, form a tetrahedral cage around an oxygen (O) ion. At low temperatures, the spins of materials with this structure often ‘freeze’ into what is called a ‘spin ice’ because of its similarity to the way hydrogen ions form around oxygen in water ice.

Onoda and Tanaka predict, however, that the quantum fluctuations in the spins melt the spin ice structure of Pr2Ir2O7. They proposed a realistic model of Pr spins on a pyrochlore lattice and suggested that both the geometry of the crystal and the small size of the spin on the Pr ion allowed the quantum fluctuations to grow so large that they melted the spin ice into a chiral spin liquid.

If their prediction is correct, Pr2Ir2O7 will be the first material in which one can study this new state of matter.

The corresponding author for this highlight is based at the Condensed Matter Theory Laboratory, RIKEN Advanced Science Institute

Journal information

1. Machida, Y., Nakatsuji, S., Onoda, S., Tayama, T. & Sakakibara, T. Time-reversal symmetry breaking and spontaneous Hall effect without magnetic dipole order. Nature 463, 210–213 (2010).

2. Onoda, S. & Tanaka, Y. Quantum melting of spin ice: Emergent cooperative quadrupole and chirality. Physical Review Letters 105, 047201 (2010).

gro-pr | Research asia research news
Further information:
http://www.rikenresearch.riken.jp/eng/research/6392
http://www.researchsea.com

More articles from Physics and Astronomy:

nachricht From rocks in Colorado, evidence of a 'chaotic solar system'
23.02.2017 | University of Wisconsin-Madison

nachricht Prediction: More gas-giants will be found orbiting Sun-like stars
22.02.2017 | Carnegie Institution for Science

All articles from Physics and Astronomy >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Breakthrough with a chain of gold atoms

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

Im Focus: DNA repair: a new letter in the cell alphabet

Results reveal how discoveries may be hidden in scientific “blind spots”

Cells need to repair damaged DNA in our genes to prevent the development of cancer and other diseases. Our cells therefore activate and send “repair-proteins”...

Im Focus: Dresdner scientists print tomorrow’s world

The Fraunhofer IWS Dresden and Technische Universität Dresden inaugurated their jointly operated Center for Additive Manufacturing Dresden (AMCD) with a festive ceremony on February 7, 2017. Scientists from various disciplines perform research on materials, additive manufacturing processes and innovative technologies, which build up components in a layer by layer process. This technology opens up new horizons for component design and combinations of functions. For example during fabrication, electrical conductors and sensors are already able to be additively manufactured into components. They provide information about stress conditions of a product during operation.

The 3D-printing technology, or additive manufacturing as it is often called, has long made the step out of scientific research laboratories into industrial...

Im Focus: Mimicking nature's cellular architectures via 3-D printing

Research offers new level of control over the structure of 3-D printed materials

Nature does amazing things with limited design materials. Grass, for example, can support its own weight, resist strong wind loads, and recover after being...

Im Focus: Three Magnetic States for Each Hole

Nanometer-scale magnetic perforated grids could create new possibilities for computing. Together with international colleagues, scientists from the Helmholtz Zentrum Dresden-Rossendorf (HZDR) have shown how a cobalt grid can be reliably programmed at room temperature. In addition they discovered that for every hole ("antidot") three magnetic states can be configured. The results have been published in the journal "Scientific Reports".

Physicist Dr. Rantej Bali from the HZDR, together with scientists from Singapore and Australia, designed a special grid structure in a thin layer of cobalt in...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Booth and panel discussion – The Lindau Nobel Laureate Meetings at the AAAS 2017 Annual Meeting

13.02.2017 | Event News

Complex Loading versus Hidden Reserves

10.02.2017 | Event News

International Conference on Crystal Growth in Freiburg

09.02.2017 | Event News

 
Latest News

Stingless bees have their nests protected by soldiers

24.02.2017 | Life Sciences

New risk factors for anxiety disorders

24.02.2017 | Life Sciences

MWC 2017: 5G Capital Berlin

24.02.2017 | Trade Fair News

VideoLinks
B2B-VideoLinks
More VideoLinks >>>