Finding hope in a meltdown

Symmetry is a fundamental concept in physics. Our ‘standard model’ of particle physics, for example, predicts that matter and anti-matter should have been created in equal amounts at the big bang, yet our existing universe is mostly matter. Such a discrepancy between the symmetry of known physical laws, and what we actually observe, are often the inspiration for realizing that new interactions are important or that new phases of matter can exist.

Shigeki Onoda, a theorist at the RIKEN Advanced Science Institute in Wako, recognized that experimentalists at The University of Tokyo had possibly discovered a new state of matter, called a ‘chiral spin liquid’ when they reported evidence of time-reversal symmetry breaking1—a difference between the trajectory of a particle moving along one path or its inverse—in the oxide called Pr2Ir2O7. If a material is magnetic, or in a magnetic field, its electrons will not obey time reversal symmetry; but in Pr2Ir2O7, neither contribution was present to explain what the experimentalists had observed.

Now, Onoda and colleague Yoichi Tanaka have explained how a chiral spin liquid could emerge from so-called ‘quantum spin fluctuations’—the motion of spins that occurs even at absolute zero2. “The possibility of a chiral spin liquid was first proposed twenty years ago and many physicists had lost hope to find it,” explains Onoda. “This is a revival of a phase that was found in a totally different system than where it was first expected.”

The interesting properties of Pr2Ir2O7 are rooted in its crystal structure, called a pyrochlore lattice: four praseodymium (Pr) ions, each of which carries a magnetic ‘spin’, form a tetrahedral cage around an oxygen (O) ion. At low temperatures, the spins of materials with this structure often ‘freeze’ into what is called a ‘spin ice’ because of its similarity to the way hydrogen ions form around oxygen in water ice.

Onoda and Tanaka predict, however, that the quantum fluctuations in the spins melt the spin ice structure of Pr2Ir2O7. They proposed a realistic model of Pr spins on a pyrochlore lattice and suggested that both the geometry of the crystal and the small size of the spin on the Pr ion allowed the quantum fluctuations to grow so large that they melted the spin ice into a chiral spin liquid.

If their prediction is correct, Pr2Ir2O7 will be the first material in which one can study this new state of matter.

The corresponding author for this highlight is based at the Condensed Matter Theory Laboratory, RIKEN Advanced Science Institute

Journal information

1. Machida, Y., Nakatsuji, S., Onoda, S., Tayama, T. & Sakakibara, T. Time-reversal symmetry breaking and spontaneous Hall effect without magnetic dipole order. Nature 463, 210–213 (2010).

2. Onoda, S. & Tanaka, Y. Quantum melting of spin ice: Emergent cooperative quadrupole and chirality. Physical Review Letters 105, 047201 (2010).

Media Contact

gro-pr Research asia research news

All latest news from the category: Physics and Astronomy

This area deals with the fundamental laws and building blocks of nature and how they interact, the properties and the behavior of matter, and research into space and time and their structures.

innovations-report provides in-depth reports and articles on subjects such as astrophysics, laser technologies, nuclear, quantum, particle and solid-state physics, nanotechnologies, planetary research and findings (Mars, Venus) and developments related to the Hubble Telescope.

Back to home

Comments (0)

Write a comment

Newest articles

Superradiant atoms could push the boundaries of how precisely time can be measured

Superradiant atoms can help us measure time more precisely than ever. In a new study, researchers from the University of Copenhagen present a new method for measuring the time interval,…

Ion thermoelectric conversion devices for near room temperature

The electrode sheet of the thermoelectric device consists of ionic hydrogel, which is sandwiched between the electrodes to form, and the Prussian blue on the electrode undergoes a redox reaction…

Zap Energy achieves 37-million-degree temperatures in a compact device

New publication reports record electron temperatures for a small-scale, sheared-flow-stabilized Z-pinch fusion device. In the nine decades since humans first produced fusion reactions, only a few fusion technologies have demonstrated…

Partners & Sponsors