Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Finding hope in a meltdown

20.09.2010
Theoretical physicists find evidence of a new state of matter in a simple oxide

Symmetry is a fundamental concept in physics. Our ‘standard model’ of particle physics, for example, predicts that matter and anti-matter should have been created in equal amounts at the big bang, yet our existing universe is mostly matter. Such a discrepancy between the symmetry of known physical laws, and what we actually observe, are often the inspiration for realizing that new interactions are important or that new phases of matter can exist.

Shigeki Onoda, a theorist at the RIKEN Advanced Science Institute in Wako, recognized that experimentalists at The University of Tokyo had possibly discovered a new state of matter, called a ‘chiral spin liquid’ when they reported evidence of time-reversal symmetry breaking1—a difference between the trajectory of a particle moving along one path or its inverse—in the oxide called Pr2Ir2O7. If a material is magnetic, or in a magnetic field, its electrons will not obey time reversal symmetry; but in Pr2Ir2O7, neither contribution was present to explain what the experimentalists had observed.

Now, Onoda and colleague Yoichi Tanaka have explained how a chiral spin liquid could emerge from so-called ‘quantum spin fluctuations’—the motion of spins that occurs even at absolute zero2. “The possibility of a chiral spin liquid was first proposed twenty years ago and many physicists had lost hope to find it,” explains Onoda. “This is a revival of a phase that was found in a totally different system than where it was first expected.”

The interesting properties of Pr2Ir2O7 are rooted in its crystal structure, called a pyrochlore lattice: four praseodymium (Pr) ions, each of which carries a magnetic ‘spin’, form a tetrahedral cage around an oxygen (O) ion. At low temperatures, the spins of materials with this structure often ‘freeze’ into what is called a ‘spin ice’ because of its similarity to the way hydrogen ions form around oxygen in water ice.

Onoda and Tanaka predict, however, that the quantum fluctuations in the spins melt the spin ice structure of Pr2Ir2O7. They proposed a realistic model of Pr spins on a pyrochlore lattice and suggested that both the geometry of the crystal and the small size of the spin on the Pr ion allowed the quantum fluctuations to grow so large that they melted the spin ice into a chiral spin liquid.

If their prediction is correct, Pr2Ir2O7 will be the first material in which one can study this new state of matter.

The corresponding author for this highlight is based at the Condensed Matter Theory Laboratory, RIKEN Advanced Science Institute

Journal information

1. Machida, Y., Nakatsuji, S., Onoda, S., Tayama, T. & Sakakibara, T. Time-reversal symmetry breaking and spontaneous Hall effect without magnetic dipole order. Nature 463, 210–213 (2010).

2. Onoda, S. & Tanaka, Y. Quantum melting of spin ice: Emergent cooperative quadrupole and chirality. Physical Review Letters 105, 047201 (2010).

gro-pr | Research asia research news
Further information:
http://www.rikenresearch.riken.jp/eng/research/6392
http://www.researchsea.com

More articles from Physics and Astronomy:

nachricht Structured light and nanomaterials open new ways to tailor light at the nanoscale
23.04.2018 | Academy of Finland

nachricht On the shape of the 'petal' for the dissipation curve
23.04.2018 | Lobachevsky University

All articles from Physics and Astronomy >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Molecules Brilliantly Illuminated

Physicists at the Laboratory for Attosecond Physics, which is jointly run by Ludwig-Maximilians-Universität and the Max Planck Institute of Quantum Optics, have developed a high-power laser system that generates ultrashort pulses of light covering a large share of the mid-infrared spectrum. The researchers envisage a wide range of applications for the technology – in the early diagnosis of cancer, for instance.

Molecules are the building blocks of life. Like all other organisms, we are made of them. They control our biorhythm, and they can also reflect our state of...

Im Focus: Spider silk key to new bone-fixing composite

University of Connecticut researchers have created a biodegradable composite made of silk fibers that can be used to repair broken load-bearing bones without the complications sometimes presented by other materials.

Repairing major load-bearing bones such as those in the leg can be a long and uncomfortable process.

Im Focus: Writing and deleting magnets with lasers

Study published in the journal ACS Applied Materials & Interfaces is the outcome of an international effort that included teams from Dresden and Berlin in Germany, and the US.

Scientists at the Helmholtz-Zentrum Dresden-Rossendorf (HZDR) together with colleagues from the Helmholtz-Zentrum Berlin (HZB) and the University of Virginia...

Im Focus: Gamma-ray flashes from plasma filaments

Novel highly efficient and brilliant gamma-ray source: Based on model calculations, physicists of the Max PIanck Institute for Nuclear Physics in Heidelberg propose a novel method for an efficient high-brilliance gamma-ray source. A giant collimated gamma-ray pulse is generated from the interaction of a dense ultra-relativistic electron beam with a thin solid conductor. Energetic gamma-rays are copiously produced as the electron beam splits into filaments while propagating across the conductor. The resulting gamma-ray energy and flux enable novel experiments in nuclear and fundamental physics.

The typical wavelength of light interacting with an object of the microcosm scales with the size of this object. For atoms, this ranges from visible light to...

Im Focus: Basel researchers succeed in cultivating cartilage from stem cells

Stable joint cartilage can be produced from adult stem cells originating from bone marrow. This is made possible by inducing specific molecular processes occurring during embryonic cartilage formation, as researchers from the University and University Hospital of Basel report in the scientific journal PNAS.

Certain mesenchymal stem/stromal cells from the bone marrow of adults are considered extremely promising for skeletal tissue regeneration. These adult stem...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

Invitation to the upcoming "Current Topics in Bioinformatics: Big Data in Genomics and Medicine"

13.04.2018 | Event News

Unique scope of UV LED technologies and applications presented in Berlin: ICULTA-2018

12.04.2018 | Event News

IWOLIA: A conference bringing together German Industrie 4.0 and French Industrie du Futur

09.04.2018 | Event News

 
Latest News

Structured light and nanomaterials open new ways to tailor light at the nanoscale

23.04.2018 | Physics and Astronomy

On the shape of the 'petal' for the dissipation curve

23.04.2018 | Physics and Astronomy

Clean and Efficient – Fraunhofer ISE Presents Hydrogen Technologies at the HANNOVER MESSE 2018

23.04.2018 | Trade Fair News

VideoLinks
Science & Research
Overview of more VideoLinks >>>