Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:


Final space shuttle to carry 5 CU-Boulder-built payloads

The University of Colorado Boulder is involved with five different space science payloads ranging from antibody tests that may lead to new bone-loss treatments to an experiment to improve vaccine effectiveness for combating salmonella when Atlantis thunders skyward July 8 on the last of NASA's 135 space shuttle missions.

One experiment, sponsored by the global pharmaceutical companies Amgen and UCB, will test an antibody to sclerostin -- a protein that has a negative effect on bone formation, mass and strength -- on lab mice flying on the shuttle. Researchers on the project hope the sclerostin antibody treatment will inhibit the action of sclerostin.

The research team hopes the findings may lead to potential therapeutic treatments for astronauts, who suffer significant bone loss during spaceflight, especially on long-term missions. They also might provide insight for future research in the prevention and treatment of skeletal fragility that may be caused by stroke, cerebral palsy, muscular dystrophy, spinal cord injury and reduced physical activity. Amgen is headquartered in Thousand Oaks, Calif., while UCB is headquartered in Brussels, Belgium.

There are seven co-principal investigators on the sclerostin antibody experiment, including Louis Stodieck, director of CU-Boulder's BioServe Space Technologies and a faculty member in the aerospace engineering sciences department. The research team includes a second CU-Boulder co-principal investigator, Assistant Professor Virginia Ferguson of mechanical engineering, an expert in biomaterials, including bone.

A second payload, called the Recombinant Attenuated Salmonella Vaccine, or RASV, will allow scientists to search for novel gene targets for vaccine development and improvement using the low gravity of space. The principal investigator on the experiment is Associate Professor Cheryl Nickerson of Arizona State University.

The RASV experiment will be carried aboard Atlantis in sets of specially designed fluid-processing cylinders built by BioServe known as GAPs, said Stodieck. Each GAP holds eight test-tube-like devices that allow Salmonella and growth media to be mixed in space. Astronauts will operate the experiments using hand cranks to first trigger cell growth via fluid mixing and later to terminate it.

A third payload will allow researchers to examine genetic alterations spurred by cellular changes in yeast. Since some cells have been shown to undergo significant changes in microgravity -- like producing larger quantities of rare antibiotics or making large amounts of bioactive medicinal proteins -- the team will analyze 6,000 different genetically altered yeast strains aboard the payload to identify specific genes that are linked to such space-based changes. This knowledge could someday help efforts to produce new and better medicines, said Stodieck.

Led by Timothy Hammond of the Veteran's Administration in Washington, D.C., the payload will be flown inside two types of BioServe flight hardware known as an opticell processing module and a plate habitat that rides inside a BioServe Generic Bioprocessing Apparatus, or CGBA. The CGBA is an automated, suitcase-sized device developed by CU-Boulder that has been launched on more than 20 NASA space shuttle missions and which provides steady temperature control. There currently are two BioServe CGBA devices on the International Space Station, one of which will be used for processing the yeast experiment at an elevated temperature.

A fourth payload involving biofilms may help scientists understand how and why slimy and troublesome clumps of microorganisms flourish in the low-gravity conditions of space. The experiments on biofilms -- clusters of microorganisms that adhere to each other or to various surfaces -- are of high interest to space scientists because of their potential impacts on astronaut and spacecraft health, said Stodieck.

Led by Professor Cynthia Collins of Rensselaer Polytechnic Institute in Troy, N.Y., the biofilm experiment riding inside a second BioServe CGBA will target the growth, physiology and cell-to-cell interactions in microbial biofilms. The team will examine how the formation of the three-dimensional structure of biofilms formed by microbes differs in spaceflight versus normal gravity.

A fifth payload will be used to assess the effects of microgravity on the formation, establishment and multiplication of cells in a tropical plant known as Jatropha that produces energy-rich nuts, a popular new renewable crop for biofuels. The team will be looking for genes that help or hinder Jatropha growth to see if new strains can be developed and commercially grown in "warm-temperate" areas like the southern United States. The lead scientist on the experiment is Associate Professor Wagner Vendrame of the University of Florida.

BioServe is a nonprofit, NASA-supported center founded in 1987 at CU-Boulder to develop new or improved products through space life science research in partnership with industry, academia and government. Since 1991 BioServe has flown payloads on 37 NASA space shuttle microgravity missions.

Although NASA's space shuttle program will be shuttered following the Atlantis mission, hardware and experiments developed by BioServe are manifested on various international resupply vehicles traveling to the International Space Station, as well as on U.S. spacecraft now under development, said Stodieck.

"We would be unable to carry out all of our research without the help of CU-Boulder students," he said. "Both undergraduate and graduate students play an important role in designing, building and testing spaceflight payloads, activities that can give them a significant advantage when they move on to careers in the aerospace industry."

BioServe also has flown several K-12 educational experiments on the space station, including seed-germination studies, spider web-weaving experiments, butterfly life cycle experiments and crystal garden growth experiments -- all of which have provided learning opportunities for thousands of middle school and high school students around the world. The K-12 efforts have been led by Stefanie Countryman, BioServe's business manager and coordinator of education outreach.

For more information on BioServe visit

Louis Stodieck | EurekAlert!
Further information:

More articles from Physics and Astronomy:

nachricht Space observation with radar to secure Germany's space infrastructure
23.03.2018 | Fraunhofer-Institut für Hochfrequenzphysik und Radartechnik FHR

nachricht Researchers at Fraunhofer monitor re-entry of Chinese space station Tiangong-1
21.03.2018 | Fraunhofer-Institut für Hochfrequenzphysik und Radartechnik FHR

All articles from Physics and Astronomy >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Space observation with radar to secure Germany's space infrastructure

Satellites in near-Earth orbit are at risk due to the steady increase in space debris. But their mission in the areas of telecommunications, navigation or weather forecasts is essential for society. Fraunhofer FHR therefore develops radar-based systems which allow the detection, tracking and cataloging of even the smallest particles of debris. Satellite operators who have access to our data are in a better position to plan evasive maneuvers and prevent destructive collisions. From April, 25-29 2018, Fraunhofer FHR and its partners will exhibit the complementary radar systems TIRA and GESTRA as well as the latest radar techniques for space observation across three stands at the ILA Berlin.

The "traffic situation" in space is very tense: the Earth is currently being orbited not only by countless satellites but also by a large volume of space...

Im Focus: Researchers Discover New Anti-Cancer Protein

An international team of researchers has discovered a new anti-cancer protein. The protein, called LHPP, prevents the uncontrolled proliferation of cancer cells in the liver. The researchers led by Prof. Michael N. Hall from the Biozentrum, University of Basel, report in “Nature” that LHPP can also serve as a biomarker for the diagnosis and prognosis of liver cancer.

The incidence of liver cancer, also known as hepatocellular carcinoma, is steadily increasing. In the last twenty years, the number of cases has almost doubled...

Im Focus: Researchers at Fraunhofer monitor re-entry of Chinese space station Tiangong-1

In just a few weeks from now, the Chinese space station Tiangong-1 will re-enter the Earth's atmosphere where it will to a large extent burn up. It is possible that some debris will reach the Earth's surface. Tiangong-1 is orbiting the Earth uncontrolled at a speed of approx. 29,000 km/h.Currently the prognosis relating to the time of impact currently lies within a window of several days. The scientists at Fraunhofer FHR have already been monitoring Tiangong-1 for a number of weeks with their TIRA system, one of the most powerful space observation radars in the world, with a view to supporting the German Space Situational Awareness Center and the ESA with their re-entry forecasts.

Following the loss of radio contact with Tiangong-1 in 2016 and due to the low orbital height, it is now inevitable that the Chinese space station will...

Im Focus: Alliance „OLED Licht Forum“ – Key partner for OLED lighting solutions

Fraunhofer Institute for Organic Electronics, Electron Beam and Plasma Technology FEP, provider of research and development services for OLED lighting solutions, announces the founding of the “OLED Licht Forum” and presents latest OLED design and lighting solutions during light+building, from March 18th – 23rd, 2018 in Frankfurt a.M./Germany, at booth no. F91 in Hall 4.0.

They are united in their passion for OLED (organic light emitting diodes) lighting with all of its unique facets and application possibilities. Thus experts in...

Im Focus: Mars' oceans formed early, possibly aided by massive volcanic eruptions

Oceans formed before Tharsis and evolved together, shaping climate history of Mars

A new scenario seeking to explain how Mars' putative oceans came and went over the last 4 billion years implies that the oceans formed several hundred million...

All Focus news of the innovation-report >>>



Industry & Economy
Event News

New solar solutions for sustainable buildings and cities

23.03.2018 | Event News

Virtual reality conference comes to Reutlingen

19.03.2018 | Event News

Ultrafast Wireless and Chip Design at the DATE Conference in Dresden

16.03.2018 | Event News

Latest News

Don't Give the Slightest Chance to Toxic Elements in Medicinal Products

23.03.2018 | Life Sciences

Sensitive grip

23.03.2018 | Materials Sciences

No compromises: Combining the benefits of 3D printing and casting

23.03.2018 | Process Engineering

Science & Research
Overview of more VideoLinks >>>