Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Feuding helium dwarfs exposed by eclipse

25.05.2011
Researchers at the University of Warwick have found a unique feuding double white dwarf star system where each star appears to have been stripped down to just its helium.

We know of just over 50 close double white dwarfs but this was only the second ever eclipsing close white dwarf pair to be found. The University of Warwick astronomers Steven Parsons and Professor Tom Marsh were able to use the fact that the stars eclipse each other when seen from Earth to make particularly detailed observations of the system.

These observations revealed that uniquely both the white dwarf stars in this pairing are composed largely of helium. Most white dwarfs tend to have largely inert cores of carbon and oxygen that have formed over the star’s long life when it has used up most of its hydrogen and helium. Helium white dwarfs are a sure sign that the star has undergone some extreme mass loss at some point. To find two such helium white dwarfs stars is a clear sign to astronomers that both stars have had an exotic and mutually destructive past.

What was originally the most massive star of the pair had once actually began to expand to become a red giant but its outer hydrogen envelope was ripped off by its companion. This meant the star never got an opportunity to start fusing its helium and it was left as a helium white dwarf. When the companion star then began expanded it also had its expanding layer torn off by the first star - but as the first star was already reduced to a white dwarf it could not use that new material. That hydrogen was therefore simply lost to the star system leaving behind helium white dwarfs.

In just over 1 billion years, the two stars feud will end as they will spiral together and merge, finally igniting each other’s helium to become an object known as a hot subdwarf which should last for 100 million years

The University of Warwick researchers found this star system CSS 41177 (which is over 351 parsecs , or 1140 light years, away - in the constellation Leo) using a combination of data from the robotic 2m Liverpool Telescope in the Canary Islands and the 8m Gemini Telescope on Hawaii.

The full paper has been accepted for publication in the Astrophysical Journal and is entitled A deeply eclipsing detached double helium white dwarf binary Authors: S. G. Parsons, T. R. Marsh, B. T. Gänsicke, A. J. Drake, D. Koester

For further details please contact:

Professor Tom Marsh
Department of Physics, University of Warwick+44 (0)24765 74739
Email: tom.marsh(at)warwick.ac.uk
Steven Parsons
Department of Physics, University of Warwick
email: stevengparsons@gmail.com
Peter Dunn, Head of Communications
University of Warwick, Tel: +44 (0)24 76 523708
Mobile/Cell +44 (0)7767 655860
p.j.dunn@warwick.ac.uk
PR71 25th May 2011

Professor Tom Marsh | EurekAlert!
Further information:
http://www.warwick.ac.uk

Further reports about: Helium Hydrogen Parsons Telescope star system stars eclipse white dwarf

More articles from Physics and Astronomy:

nachricht Engineering team images tiny quasicrystals as they form
18.08.2017 | Cornell University

nachricht Astrophysicists explain the mysterious behavior of cosmic rays
18.08.2017 | Moscow Institute of Physics and Technology

All articles from Physics and Astronomy >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Fizzy soda water could be key to clean manufacture of flat wonder material: Graphene

Whether you call it effervescent, fizzy, or sparkling, carbonated water is making a comeback as a beverage. Aside from quenching thirst, researchers at the University of Illinois at Urbana-Champaign have discovered a new use for these "bubbly" concoctions that will have major impact on the manufacturer of the world's thinnest, flattest, and one most useful materials -- graphene.

As graphene's popularity grows as an advanced "wonder" material, the speed and quality at which it can be manufactured will be paramount. With that in mind,...

Im Focus: Exotic quantum states made from light: Physicists create optical “wells” for a super-photon

Physicists at the University of Bonn have managed to create optical hollows and more complex patterns into which the light of a Bose-Einstein condensate flows. The creation of such highly low-loss structures for light is a prerequisite for complex light circuits, such as for quantum information processing for a new generation of computers. The researchers are now presenting their results in the journal Nature Photonics.

Light particles (photons) occur as tiny, indivisible portions. Many thousands of these light portions can be merged to form a single super-photon if they are...

Im Focus: Circular RNA linked to brain function

For the first time, scientists have shown that circular RNA is linked to brain function. When a RNA molecule called Cdr1as was deleted from the genome of mice, the animals had problems filtering out unnecessary information – like patients suffering from neuropsychiatric disorders.

While hundreds of circular RNAs (circRNAs) are abundant in mammalian brains, one big question has remained unanswered: What are they actually good for? In the...

Im Focus: RAVAN CubeSat measures Earth's outgoing energy

An experimental small satellite has successfully collected and delivered data on a key measurement for predicting changes in Earth's climate.

The Radiometer Assessment using Vertically Aligned Nanotubes (RAVAN) CubeSat was launched into low-Earth orbit on Nov. 11, 2016, in order to test new...

Im Focus: Scientists shine new light on the “other high temperature superconductor”

A study led by scientists of the Max Planck Institute for the Structure and Dynamics of Matter (MPSD) at the Center for Free-Electron Laser Science in Hamburg presents evidence of the coexistence of superconductivity and “charge-density-waves” in compounds of the poorly-studied family of bismuthates. This observation opens up new perspectives for a deeper understanding of the phenomenon of high-temperature superconductivity, a topic which is at the core of condensed matter research since more than 30 years. The paper by Nicoletti et al has been published in the PNAS.

Since the beginning of the 20th century, superconductivity had been observed in some metals at temperatures only a few degrees above the absolute zero (minus...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Call for Papers – ICNFT 2018, 5th International Conference on New Forming Technology

16.08.2017 | Event News

Sustainability is the business model of tomorrow

04.08.2017 | Event News

Clash of Realities 2017: Registration now open. International Conference at TH Köln

26.07.2017 | Event News

 
Latest News

Nagoya physicists resolve long-standing mystery of structure-less transition

21.08.2017 | Materials Sciences

Chronic stress induces fatal organ dysfunctions via a new neural circuit

21.08.2017 | Health and Medicine

Scientists from the MSU studied new liquid-crystalline photochrom

21.08.2017 | Materials Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>