Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Feuding helium dwarfs exposed by eclipse

25.05.2011
Researchers at the University of Warwick have found a unique feuding double white dwarf star system where each star appears to have been stripped down to just its helium.

We know of just over 50 close double white dwarfs but this was only the second ever eclipsing close white dwarf pair to be found. The University of Warwick astronomers Steven Parsons and Professor Tom Marsh were able to use the fact that the stars eclipse each other when seen from Earth to make particularly detailed observations of the system.

These observations revealed that uniquely both the white dwarf stars in this pairing are composed largely of helium. Most white dwarfs tend to have largely inert cores of carbon and oxygen that have formed over the star’s long life when it has used up most of its hydrogen and helium. Helium white dwarfs are a sure sign that the star has undergone some extreme mass loss at some point. To find two such helium white dwarfs stars is a clear sign to astronomers that both stars have had an exotic and mutually destructive past.

What was originally the most massive star of the pair had once actually began to expand to become a red giant but its outer hydrogen envelope was ripped off by its companion. This meant the star never got an opportunity to start fusing its helium and it was left as a helium white dwarf. When the companion star then began expanded it also had its expanding layer torn off by the first star - but as the first star was already reduced to a white dwarf it could not use that new material. That hydrogen was therefore simply lost to the star system leaving behind helium white dwarfs.

In just over 1 billion years, the two stars feud will end as they will spiral together and merge, finally igniting each other’s helium to become an object known as a hot subdwarf which should last for 100 million years

The University of Warwick researchers found this star system CSS 41177 (which is over 351 parsecs , or 1140 light years, away - in the constellation Leo) using a combination of data from the robotic 2m Liverpool Telescope in the Canary Islands and the 8m Gemini Telescope on Hawaii.

The full paper has been accepted for publication in the Astrophysical Journal and is entitled A deeply eclipsing detached double helium white dwarf binary Authors: S. G. Parsons, T. R. Marsh, B. T. Gänsicke, A. J. Drake, D. Koester

For further details please contact:

Professor Tom Marsh
Department of Physics, University of Warwick+44 (0)24765 74739
Email: tom.marsh(at)warwick.ac.uk
Steven Parsons
Department of Physics, University of Warwick
email: stevengparsons@gmail.com
Peter Dunn, Head of Communications
University of Warwick, Tel: +44 (0)24 76 523708
Mobile/Cell +44 (0)7767 655860
p.j.dunn@warwick.ac.uk
PR71 25th May 2011

Professor Tom Marsh | EurekAlert!
Further information:
http://www.warwick.ac.uk

Further reports about: Helium Hydrogen Parsons Telescope star system stars eclipse white dwarf

More articles from Physics and Astronomy:

nachricht Study offers new theoretical approach to describing non-equilibrium phase transitions
27.04.2017 | DOE/Argonne National Laboratory

nachricht SwRI-led team discovers lull in Mars' giant impact history
26.04.2017 | Southwest Research Institute

All articles from Physics and Astronomy >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Making lightweight construction suitable for series production

More and more automobile companies are focusing on body parts made of carbon fiber reinforced plastics (CFRP). However, manufacturing and repair costs must be further reduced in order to make CFRP more economical in use. Together with the Volkswagen AG and five other partners in the project HolQueSt 3D, the Laser Zentrum Hannover e.V. (LZH) has developed laser processes for the automatic trimming, drilling and repair of three-dimensional components.

Automated manufacturing processes are the basis for ultimately establishing the series production of CFRP components. In the project HolQueSt 3D, the LZH has...

Im Focus: Wonder material? Novel nanotube structure strengthens thin films for flexible electronics

Reflecting the structure of composites found in nature and the ancient world, researchers at the University of Illinois at Urbana-Champaign have synthesized thin carbon nanotube (CNT) textiles that exhibit both high electrical conductivity and a level of toughness that is about fifty times higher than copper films, currently used in electronics.

"The structural robustness of thin metal films has significant importance for the reliable operation of smart skin and flexible electronics including...

Im Focus: Deep inside Galaxy M87

The nearby, giant radio galaxy M87 hosts a supermassive black hole (BH) and is well-known for its bright jet dominating the spectrum over ten orders of magnitude in frequency. Due to its proximity, jet prominence, and the large black hole mass, M87 is the best laboratory for investigating the formation, acceleration, and collimation of relativistic jets. A research team led by Silke Britzen from the Max Planck Institute for Radio Astronomy in Bonn, Germany, has found strong indication for turbulent processes connecting the accretion disk and the jet of that galaxy providing insights into the longstanding problem of the origin of astrophysical jets.

Supermassive black holes form some of the most enigmatic phenomena in astrophysics. Their enormous energy output is supposed to be generated by the...

Im Focus: A Quantum Low Pass for Photons

Physicists in Garching observe novel quantum effect that limits the number of emitted photons.

The probability to find a certain number of photons inside a laser pulse usually corresponds to a classical distribution of independent events, the so-called...

Im Focus: Microprocessors based on a layer of just three atoms

Microprocessors based on atomically thin materials hold the promise of the evolution of traditional processors as well as new applications in the field of flexible electronics. Now, a TU Wien research team led by Thomas Müller has made a breakthrough in this field as part of an ongoing research project.

Two-dimensional materials, or 2D materials for short, are extremely versatile, although – or often more precisely because – they are made up of just one or a...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Fighting drug resistant tuberculosis – InfectoGnostics meets MYCO-NET² partners in Peru

28.04.2017 | Event News

Expert meeting “Health Business Connect” will connect international medical technology companies

20.04.2017 | Event News

Wenn der Computer das Gehirn austrickst

18.04.2017 | Event News

 
Latest News

Wireless power can drive tiny electronic devices in the GI tract

28.04.2017 | Medical Engineering

Ice cave in Transylvania yields window into region's past

28.04.2017 | Earth Sciences

Nose2Brain – Better Therapy for Multiple Sclerosis

28.04.2017 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>