Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Feuding helium dwarfs exposed by eclipse

25.05.2011
Researchers at the University of Warwick have found a unique feuding double white dwarf star system where each star appears to have been stripped down to just its helium.

We know of just over 50 close double white dwarfs but this was only the second ever eclipsing close white dwarf pair to be found. The University of Warwick astronomers Steven Parsons and Professor Tom Marsh were able to use the fact that the stars eclipse each other when seen from Earth to make particularly detailed observations of the system.

These observations revealed that uniquely both the white dwarf stars in this pairing are composed largely of helium. Most white dwarfs tend to have largely inert cores of carbon and oxygen that have formed over the star’s long life when it has used up most of its hydrogen and helium. Helium white dwarfs are a sure sign that the star has undergone some extreme mass loss at some point. To find two such helium white dwarfs stars is a clear sign to astronomers that both stars have had an exotic and mutually destructive past.

What was originally the most massive star of the pair had once actually began to expand to become a red giant but its outer hydrogen envelope was ripped off by its companion. This meant the star never got an opportunity to start fusing its helium and it was left as a helium white dwarf. When the companion star then began expanded it also had its expanding layer torn off by the first star - but as the first star was already reduced to a white dwarf it could not use that new material. That hydrogen was therefore simply lost to the star system leaving behind helium white dwarfs.

In just over 1 billion years, the two stars feud will end as they will spiral together and merge, finally igniting each other’s helium to become an object known as a hot subdwarf which should last for 100 million years

The University of Warwick researchers found this star system CSS 41177 (which is over 351 parsecs , or 1140 light years, away - in the constellation Leo) using a combination of data from the robotic 2m Liverpool Telescope in the Canary Islands and the 8m Gemini Telescope on Hawaii.

The full paper has been accepted for publication in the Astrophysical Journal and is entitled A deeply eclipsing detached double helium white dwarf binary Authors: S. G. Parsons, T. R. Marsh, B. T. Gänsicke, A. J. Drake, D. Koester

For further details please contact:

Professor Tom Marsh
Department of Physics, University of Warwick+44 (0)24765 74739
Email: tom.marsh(at)warwick.ac.uk
Steven Parsons
Department of Physics, University of Warwick
email: stevengparsons@gmail.com
Peter Dunn, Head of Communications
University of Warwick, Tel: +44 (0)24 76 523708
Mobile/Cell +44 (0)7767 655860
p.j.dunn@warwick.ac.uk
PR71 25th May 2011

Professor Tom Marsh | EurekAlert!
Further information:
http://www.warwick.ac.uk

Further reports about: Helium Hydrogen Parsons Telescope star system stars eclipse white dwarf

More articles from Physics and Astronomy:

nachricht From rocks in Colorado, evidence of a 'chaotic solar system'
23.02.2017 | University of Wisconsin-Madison

nachricht Prediction: More gas-giants will be found orbiting Sun-like stars
22.02.2017 | Carnegie Institution for Science

All articles from Physics and Astronomy >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Breakthrough with a chain of gold atoms

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

Im Focus: DNA repair: a new letter in the cell alphabet

Results reveal how discoveries may be hidden in scientific “blind spots”

Cells need to repair damaged DNA in our genes to prevent the development of cancer and other diseases. Our cells therefore activate and send “repair-proteins”...

Im Focus: Dresdner scientists print tomorrow’s world

The Fraunhofer IWS Dresden and Technische Universität Dresden inaugurated their jointly operated Center for Additive Manufacturing Dresden (AMCD) with a festive ceremony on February 7, 2017. Scientists from various disciplines perform research on materials, additive manufacturing processes and innovative technologies, which build up components in a layer by layer process. This technology opens up new horizons for component design and combinations of functions. For example during fabrication, electrical conductors and sensors are already able to be additively manufactured into components. They provide information about stress conditions of a product during operation.

The 3D-printing technology, or additive manufacturing as it is often called, has long made the step out of scientific research laboratories into industrial...

Im Focus: Mimicking nature's cellular architectures via 3-D printing

Research offers new level of control over the structure of 3-D printed materials

Nature does amazing things with limited design materials. Grass, for example, can support its own weight, resist strong wind loads, and recover after being...

Im Focus: Three Magnetic States for Each Hole

Nanometer-scale magnetic perforated grids could create new possibilities for computing. Together with international colleagues, scientists from the Helmholtz Zentrum Dresden-Rossendorf (HZDR) have shown how a cobalt grid can be reliably programmed at room temperature. In addition they discovered that for every hole ("antidot") three magnetic states can be configured. The results have been published in the journal "Scientific Reports".

Physicist Dr. Rantej Bali from the HZDR, together with scientists from Singapore and Australia, designed a special grid structure in a thin layer of cobalt in...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Booth and panel discussion – The Lindau Nobel Laureate Meetings at the AAAS 2017 Annual Meeting

13.02.2017 | Event News

Complex Loading versus Hidden Reserves

10.02.2017 | Event News

International Conference on Crystal Growth in Freiburg

09.02.2017 | Event News

 
Latest News

From rocks in Colorado, evidence of a 'chaotic solar system'

23.02.2017 | Physics and Astronomy

'Quartz' crystals at the Earth's core power its magnetic field

23.02.2017 | Earth Sciences

Antimicrobial substances identified in Komodo dragon blood

23.02.2017 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>