Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Ferromagnetism plus superconductivity

19.04.2011
Researchers discover a rare physical phenomenon at low temperatures and high magnetic fields

Just in time for the 100th anniversary to commemorate the discovery of superconductivity by the Dutch physicist Heike Kamerlingh Onnes on April 8, 1911, scientists from the Helmholtz-Zentrum Dresden-Rossendorf and the TU Dresden published their research results in the journal Physical Review B.

Headed by Dr. Thomas Herrmannsdörfer, the team from the HZDR's High Magnetic Field Laboratory (HLD) examined a material consisting of the elements bismuth and nickel (Bi3Ni) with a diameter of only a few nanometers – which is unique since it has not been achieved elsewhere so far. This was made possible through a new chemical synthesis procedure at low temperatures which had been developed at the TU Dresden under the leadership of Prof. Michael Ruck. The nano scale size and the special form of the intermetallic compound – namely, tiny fibers – caused the physical properties of the material, which is non-magnetic under normal conditions, to change so dramatically.

This is a particularly impressive example of the excellent opportunities modern nanotechnology can provide today, emphasizes Dr. Thomas Herrmannsdörfer. "It's really surprising to which extend the properties of a substance can vary if one manages to reduce their size to the nanometer scale."

There are numerous materials which become superconducting at ultralow temperatures. However, this property competes with ferromagnetism which normally suppresses superconductivity. This does not happen with the analyzed compound: Here, the Dresden researchers discovered with their experiments in high magnetic fields and at ultralow temperatures that the nanostructured material exhibits completely different properties than larger-sized samples of the same material. What's most surprising: The compound is both ferromagnetic and superconducting at the same time. It is, thus, one of those rarely known materials which exhibit this unusual and physically not yet completely understood combination. Perhaps bismuth-3-nickel features a special type of superconductivity, says Dr. Herrmannsdörfer. The physicist and doctoral candidate Richard Skrotzki, who has just turned 25, is making a vital contribution to the research results and describes the phenomenon as "the bundling of contrary properties in a single strand."

The TU Dresden and the HZDR are partners in the research alliance DRESDEN-concept which pursues the objective of making visible the excellence of Dresden research.

Publication

The original article was published under the title "Structure-induced coexistence of ferromagnetic and superconducting states of single-phase Bi3Ni seen via magnetization and resistance measurements" by T. Herrmannsdörfer, R. Skrotzki, J. Wosnitza, D. Köhler, R. Boldt, and M. Ruck as "Rapid Communication" in Physical Review B, Vol. 83, No.14 (DOI: 10.1103/PhysRevB.83.140501).

The article was classified by the editors of Physical Review as particularly valuable reading.

Dr. Christine Bohnet | EurekAlert!
Further information:
http://www.hzdr.de

More articles from Physics and Astronomy:

nachricht NASA laser communications to provide Orion faster connections
30.03.2017 | NASA/Goddard Space Flight Center

nachricht Pinball at the atomic level
30.03.2017 | Max-Planck-Institut für Struktur und Dynamik der Materie

All articles from Physics and Astronomy >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: A Challenging European Research Project to Develop New Tiny Microscopes

The Institute of Semiconductor Technology and the Institute of Physical and Theoretical Chemistry, both members of the Laboratory for Emerging Nanometrology (LENA), at Technische Universität Braunschweig are partners in a new European research project entitled ChipScope, which aims to develop a completely new and extremely small optical microscope capable of observing the interior of living cells in real time. A consortium of 7 partners from 5 countries will tackle this issue with very ambitious objectives during a four-year research program.

To demonstrate the usefulness of this new scientific tool, at the end of the project the developed chip-sized microscope will be used to observe in real-time...

Im Focus: Giant Magnetic Fields in the Universe

Astronomers from Bonn and Tautenburg in Thuringia (Germany) used the 100-m radio telescope at Effelsberg to observe several galaxy clusters. At the edges of these large accumulations of dark matter, stellar systems (galaxies), hot gas, and charged particles, they found magnetic fields that are exceptionally ordered over distances of many million light years. This makes them the most extended magnetic fields in the universe known so far.

The results will be published on March 22 in the journal „Astronomy & Astrophysics“.

Galaxy clusters are the largest gravitationally bound structures in the universe. With a typical extent of about 10 million light years, i.e. 100 times the...

Im Focus: Tracing down linear ubiquitination

Researchers at the Goethe University Frankfurt, together with partners from the University of Tübingen in Germany and Queen Mary University as well as Francis Crick Institute from London (UK) have developed a novel technology to decipher the secret ubiquitin code.

Ubiquitin is a small protein that can be linked to other cellular proteins, thereby controlling and modulating their functions. The attachment occurs in many...

Im Focus: Perovskite edges can be tuned for optoelectronic performance

Layered 2D material improves efficiency for solar cells and LEDs

In the eternal search for next generation high-efficiency solar cells and LEDs, scientists at Los Alamos National Laboratory and their partners are creating...

Im Focus: Polymer-coated silicon nanosheets as alternative to graphene: A perfect team for nanoelectronics

Silicon nanosheets are thin, two-dimensional layers with exceptional optoelectronic properties very similar to those of graphene. Albeit, the nanosheets are less stable. Now researchers at the Technical University of Munich (TUM) have, for the first time ever, produced a composite material combining silicon nanosheets and a polymer that is both UV-resistant and easy to process. This brings the scientists a significant step closer to industrial applications like flexible displays and photosensors.

Silicon nanosheets are thin, two-dimensional layers with exceptional optoelectronic properties very similar to those of graphene. Albeit, the nanosheets are...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

International Land Use Symposium ILUS 2017: Call for Abstracts and Registration open

20.03.2017 | Event News

CONNECT 2017: International congress on connective tissue

14.03.2017 | Event News

ICTM Conference: Turbine Construction between Big Data and Additive Manufacturing

07.03.2017 | Event News

 
Latest News

'On-off switch' brings researchers a step closer to potential HIV vaccine

30.03.2017 | Health and Medicine

Penn studies find promise for innovations in liquid biopsies

30.03.2017 | Health and Medicine

An LED-based device for imaging radiation induced skin damage

30.03.2017 | Medical Engineering

VideoLinks
B2B-VideoLinks
More VideoLinks >>>