Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Ferromagnetism plus superconductivity

19.04.2011
Researchers discover a rare physical phenomenon at low temperatures and high magnetic fields

Just in time for the 100th anniversary to commemorate the discovery of superconductivity by the Dutch physicist Heike Kamerlingh Onnes on April 8, 1911, scientists from the Helmholtz-Zentrum Dresden-Rossendorf and the TU Dresden published their research results in the journal Physical Review B.

Headed by Dr. Thomas Herrmannsdörfer, the team from the HZDR's High Magnetic Field Laboratory (HLD) examined a material consisting of the elements bismuth and nickel (Bi3Ni) with a diameter of only a few nanometers – which is unique since it has not been achieved elsewhere so far. This was made possible through a new chemical synthesis procedure at low temperatures which had been developed at the TU Dresden under the leadership of Prof. Michael Ruck. The nano scale size and the special form of the intermetallic compound – namely, tiny fibers – caused the physical properties of the material, which is non-magnetic under normal conditions, to change so dramatically.

This is a particularly impressive example of the excellent opportunities modern nanotechnology can provide today, emphasizes Dr. Thomas Herrmannsdörfer. "It's really surprising to which extend the properties of a substance can vary if one manages to reduce their size to the nanometer scale."

There are numerous materials which become superconducting at ultralow temperatures. However, this property competes with ferromagnetism which normally suppresses superconductivity. This does not happen with the analyzed compound: Here, the Dresden researchers discovered with their experiments in high magnetic fields and at ultralow temperatures that the nanostructured material exhibits completely different properties than larger-sized samples of the same material. What's most surprising: The compound is both ferromagnetic and superconducting at the same time. It is, thus, one of those rarely known materials which exhibit this unusual and physically not yet completely understood combination. Perhaps bismuth-3-nickel features a special type of superconductivity, says Dr. Herrmannsdörfer. The physicist and doctoral candidate Richard Skrotzki, who has just turned 25, is making a vital contribution to the research results and describes the phenomenon as "the bundling of contrary properties in a single strand."

The TU Dresden and the HZDR are partners in the research alliance DRESDEN-concept which pursues the objective of making visible the excellence of Dresden research.

Publication

The original article was published under the title "Structure-induced coexistence of ferromagnetic and superconducting states of single-phase Bi3Ni seen via magnetization and resistance measurements" by T. Herrmannsdörfer, R. Skrotzki, J. Wosnitza, D. Köhler, R. Boldt, and M. Ruck as "Rapid Communication" in Physical Review B, Vol. 83, No.14 (DOI: 10.1103/PhysRevB.83.140501).

The article was classified by the editors of Physical Review as particularly valuable reading.

Dr. Christine Bohnet | EurekAlert!
Further information:
http://www.hzdr.de

More articles from Physics and Astronomy:

nachricht Breakthrough with a chain of gold atoms
17.02.2017 | Universität Konstanz

nachricht New functional principle to generate the „third harmonic“
16.02.2017 | Laser Zentrum Hannover e.V.

All articles from Physics and Astronomy >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Breakthrough with a chain of gold atoms

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

Im Focus: DNA repair: a new letter in the cell alphabet

Results reveal how discoveries may be hidden in scientific “blind spots”

Cells need to repair damaged DNA in our genes to prevent the development of cancer and other diseases. Our cells therefore activate and send “repair-proteins”...

Im Focus: Dresdner scientists print tomorrow’s world

The Fraunhofer IWS Dresden and Technische Universität Dresden inaugurated their jointly operated Center for Additive Manufacturing Dresden (AMCD) with a festive ceremony on February 7, 2017. Scientists from various disciplines perform research on materials, additive manufacturing processes and innovative technologies, which build up components in a layer by layer process. This technology opens up new horizons for component design and combinations of functions. For example during fabrication, electrical conductors and sensors are already able to be additively manufactured into components. They provide information about stress conditions of a product during operation.

The 3D-printing technology, or additive manufacturing as it is often called, has long made the step out of scientific research laboratories into industrial...

Im Focus: Mimicking nature's cellular architectures via 3-D printing

Research offers new level of control over the structure of 3-D printed materials

Nature does amazing things with limited design materials. Grass, for example, can support its own weight, resist strong wind loads, and recover after being...

Im Focus: Three Magnetic States for Each Hole

Nanometer-scale magnetic perforated grids could create new possibilities for computing. Together with international colleagues, scientists from the Helmholtz Zentrum Dresden-Rossendorf (HZDR) have shown how a cobalt grid can be reliably programmed at room temperature. In addition they discovered that for every hole ("antidot") three magnetic states can be configured. The results have been published in the journal "Scientific Reports".

Physicist Dr. Rantej Bali from the HZDR, together with scientists from Singapore and Australia, designed a special grid structure in a thin layer of cobalt in...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Booth and panel discussion – The Lindau Nobel Laureate Meetings at the AAAS 2017 Annual Meeting

13.02.2017 | Event News

Complex Loading versus Hidden Reserves

10.02.2017 | Event News

International Conference on Crystal Growth in Freiburg

09.02.2017 | Event News

 
Latest News

Switched-on DNA

20.02.2017 | Materials Sciences

Second cause of hidden hearing loss identified

20.02.2017 | Health and Medicine

Prospect for more effective treatment of nerve pain

20.02.2017 | Health and Medicine

VideoLinks
B2B-VideoLinks
More VideoLinks >>>