Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Ferroelectric switching discovered for first time in soft biological tissue

31.01.2012
The heart’s inner workings are mysterious, perhaps even more so with a new finding. Engineers at the University of Washington have discovered an electrical property in arteries not seen before in mammalian tissues.

The researchers found that the wall of the aorta, the largest blood vessel carrying blood from the heart, exhibits ferroelectricity, a response to an electric field known to exist in inorganic and synthetic materials. The findings are being published in an upcoming issue of the journal Physical Review Letters.


Jiangyu Li, UW
Electrical response overlaid on the inner aortic wall.

“The result is exciting for scientific reasons,” said lead author Jiangyu Li, a UW associate professor of mechanical engineering. “But it could also have biomedical implications.”

A ferroelectric material is an electrically polar molecule with one side positively charged and the other negatively charged, whose polarity can be reversed by applying an electrical field.

Ferroelectricity is common in synthetic materials and used for displays, memory storage, and sensors. (Related research by Li and colleagues seeks to exploit ferroelectric materials for tiny low-power, high-capacity computer memory chips.)

In the new study, Li collaborated with co-author Katherine Zhang at Boston University to explore the phenomenon in biological tissues. The only previous evidence of ferroelectricity in living tissue was reported last year in seashells. Others had looked in mammal tissue, mainly in bones, but found no signs of the property.

The new study shows clear evidence of ferroelectricity in a sample of a pig aorta. Researchers believe the findings would also apply to human tissue.

In subsequent work, yet to be published, they divided the sample into fibrous collagen and springy elastin and studied each one on its own. Pinpointing the source of the ferroelectricity may answer questions about how or whether it plays a role in the body.

“The elastin network is what gives the artery the mechanical property of elasticity, which of course is a very important function,” Li said.

Ferroelectricity may therefore play a role in how the body responds to sugar or fat.

Diabetes is a risk factor for hardening of the arteries, or atherosclerosis, which can lead to heart attack or stroke. The team is investigating the interactions between ferroelectricity and charged glucose molecules, in hopes of better understanding sugar’s effect on the mechanical properties of the aortic walls.

Another possible application is to treat a condition in which cholesterol molecules stick to the inside of the channel, eventually closing it off.

“We can imagine if we could manipulate the polarity of the artery wall, if we could switch it one way or the other, then we might, for example, better understand the deposition of cholesterol which leads to the thickening and hardening of the artery wall,” Li said.

He cautions that medical applications are still speculations, and require more research.

“A lot of questions remain to be answered, that’s an exciting aspect of the result,” Li said.

Co-authors are Yuanming Liu and Qian Nataly Chen at the UW, and Yanhang Zhang and Ming-Jay Chow at Boston University.

The research was funded by the National Science Foundation, the National Institutes of Health, the Army Research Office, the UW’s Center for Nanotechnology and a NASA Space Technology Research Fellowship.

For more information, contact Li at 206-543-6226 or jjli@uw.edu.

See also an American Institute of Physics article about the finding.

Hannah Hickey | EurekAlert!
Further information:
http://www.uw.edu

More articles from Physics and Astronomy:

nachricht From rocks in Colorado, evidence of a 'chaotic solar system'
23.02.2017 | University of Wisconsin-Madison

nachricht Prediction: More gas-giants will be found orbiting Sun-like stars
22.02.2017 | Carnegie Institution for Science

All articles from Physics and Astronomy >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Breakthrough with a chain of gold atoms

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

Im Focus: DNA repair: a new letter in the cell alphabet

Results reveal how discoveries may be hidden in scientific “blind spots”

Cells need to repair damaged DNA in our genes to prevent the development of cancer and other diseases. Our cells therefore activate and send “repair-proteins”...

Im Focus: Dresdner scientists print tomorrow’s world

The Fraunhofer IWS Dresden and Technische Universität Dresden inaugurated their jointly operated Center for Additive Manufacturing Dresden (AMCD) with a festive ceremony on February 7, 2017. Scientists from various disciplines perform research on materials, additive manufacturing processes and innovative technologies, which build up components in a layer by layer process. This technology opens up new horizons for component design and combinations of functions. For example during fabrication, electrical conductors and sensors are already able to be additively manufactured into components. They provide information about stress conditions of a product during operation.

The 3D-printing technology, or additive manufacturing as it is often called, has long made the step out of scientific research laboratories into industrial...

Im Focus: Mimicking nature's cellular architectures via 3-D printing

Research offers new level of control over the structure of 3-D printed materials

Nature does amazing things with limited design materials. Grass, for example, can support its own weight, resist strong wind loads, and recover after being...

Im Focus: Three Magnetic States for Each Hole

Nanometer-scale magnetic perforated grids could create new possibilities for computing. Together with international colleagues, scientists from the Helmholtz Zentrum Dresden-Rossendorf (HZDR) have shown how a cobalt grid can be reliably programmed at room temperature. In addition they discovered that for every hole ("antidot") three magnetic states can be configured. The results have been published in the journal "Scientific Reports".

Physicist Dr. Rantej Bali from the HZDR, together with scientists from Singapore and Australia, designed a special grid structure in a thin layer of cobalt in...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Booth and panel discussion – The Lindau Nobel Laureate Meetings at the AAAS 2017 Annual Meeting

13.02.2017 | Event News

Complex Loading versus Hidden Reserves

10.02.2017 | Event News

International Conference on Crystal Growth in Freiburg

09.02.2017 | Event News

 
Latest News

From rocks in Colorado, evidence of a 'chaotic solar system'

23.02.2017 | Physics and Astronomy

'Quartz' crystals at the Earth's core power its magnetic field

23.02.2017 | Earth Sciences

Antimicrobial substances identified in Komodo dragon blood

23.02.2017 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>