Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Fermi Large Area Telescope reveals pulsing gamma-ray sources

11.09.2009
Scientists at the Naval Research Laboratory (NRL) Space Science Division and a team of international researchers have positively identified cosmic sources of gamma-ray emissions through the discovery of 16 pulsating neutron stars.

Using the Large Area Telescope (LAT), the primary instrument on NASA's Fermi Gamma-ray Space Telescope satellite, the discoveries were made by conducting blind frequency searches on the sparse photon data provided by the LAT. The photons had energies between 20 Mega-electron-volts (MeVs) and 300 Giga-electron-volts (GeVs)— tens of millions to hundreds of billions of times more energetic than the photons we see with the human eye.

A second study, published at the same time, announced the detection of gamma-ray pulsations from eight Galactic millisecond pulsars (MSPs). Millisecond pulsars spin hundreds of times per second, but have magnetic fields 10,000 times lower than normal pulsars. These discoveries confirm that they, too, can produce powerful gamma-ray emissions.

"Fermi has truly unprecedented power for discovering and studying gamma ray pulsars," said Paul Ray astrophysicist, Naval Research Laboratory. "Since the demise of the Compton Gamma Ray Observatory a decade ago, we've wondered about the nature of unidentified gamma-ray sources it detected in our galaxy. These studies from Fermi lift the veil on many of them."

Pulsars are rapidly rotating, highly magnetized neutron stars that can emit radiation across the electromagnetic spectrum. Prior to the launch of Fermi, gamma-ray pulsations were only detected from pulsars previously discovered using radio or X-ray telescopes. Radio telescopes can detect pulsars only if one of the narrow radio beams is directly aimed at the telescope; otherwise the pulsar can remain hidden. The much broader gamma-ray beams allowed the new pulsars to be discovered as part of a comprehensive search for periodic gamma-ray emission using five months of Fermi LAT data and new computational techniques.

The newly discovered pulsars, with rotation periods that range from 48 to 444 milliseconds, help reveal the geometry of emission from rotation-powered pulsars and provide valuable information on population statistics, the energetics of pulsar wind nebulae and supernova remnants. A wide variety of astrophysical phenomena, such as pulsars, active galactic nuclei, gamma-ray bursts and some binary star systems are known to produce photons exceeding many MeVs.

"The Fermi LAT makes it possible for us to pinpoint neutron stars," said Eric Grove, astrophysicist and LAT Commissioner, NRL Space Science Division. "The combination of a very large collecting area, large field of view, and precision timing from an on-board Global Positioning System receiver enables the LAT to see sources that were far beyond the reach of previous gamma-ray telescopes."

Results of the two studies: "Detection of 16 gamma-ray pulsars through blind frequency searches using the Fermi LAT;" and "A population of gamma-ray millisecond pulsars seen with the Fermi Large Area Telescope" were published on July 2, 2009 in Science Express and may be found on the Internet at http://www.scienceexpress.org.

The LAT project is funded in the United States by NASA and developed in collaboration with the Department of Energy and by academic institutions and government agencies in France, Italy, Japan, and Sweden.

The Naval Research Laboratory is the Department of the Navy's corporate laboratory. NRL conducts a broad program of scientific research, technology, and advanced development. The Laboratory, with a total complement of nearly 2,500 personnel, is located in southwest Washington, DC, with other major sites at the Stennis Space Center, MS; and Monterey, CA

Daniel Parry | EurekAlert!
Further information:
http://www.nrl.navy.mil

More articles from Physics and Astronomy:

nachricht Temperature-controlled fiber-optic light source with liquid core
20.06.2018 | Leibniz-Institut für Photonische Technologien e. V.

nachricht New material for splitting water
19.06.2018 | American Institute of Physics

All articles from Physics and Astronomy >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Temperature-controlled fiber-optic light source with liquid core

In a recent publication in the renowned journal Optica, scientists of Leibniz-Institute of Photonic Technology (Leibniz IPHT) in Jena showed that they can accurately control the optical properties of liquid-core fiber lasers and therefore their spectral band width by temperature and pressure tuning.

Already last year, the researchers provided experimental proof of a new dynamic of hybrid solitons– temporally and spectrally stationary light waves resulting...

Im Focus: Overdosing on Calcium

Nano crystals impact stem cell fate during bone formation

Scientists from the University of Freiburg and the University of Basel identified a master regulator for bone regeneration. Prasad Shastri, Professor of...

Im Focus: AchemAsia 2019 will take place in Shanghai

Moving into its fourth decade, AchemAsia is setting out for new horizons: The International Expo and Innovation Forum for Sustainable Chemical Production will take place from 21-23 May 2019 in Shanghai, China. With an updated event profile, the eleventh edition focusses on topics that are especially relevant for the Chinese process industry, putting a strong emphasis on sustainability and innovation.

Founded in 1989 as a spin-off of ACHEMA to cater to the needs of China’s then developing industry, AchemAsia has since grown into a platform where the latest...

Im Focus: First real-time test of Li-Fi utilization for the industrial Internet of Things

The BMBF-funded OWICELLS project was successfully completed with a final presentation at the BMW plant in Munich. The presentation demonstrated a Li-Fi communication with a mobile robot, while the robot carried out usual production processes (welding, moving and testing parts) in a 5x5m² production cell. The robust, optical wireless transmission is based on spatial diversity; in other words, data is sent and received simultaneously by several LEDs and several photodiodes. The system can transmit data at more than 100 Mbit/s and five milliseconds latency.

Modern production technologies in the automobile industry must become more flexible in order to fulfil individual customer requirements.

Im Focus: Sharp images with flexible fibers

An international team of scientists has discovered a new way to transfer image information through multimodal fibers with almost no distortion - even if the fiber is bent. The results of the study, to which scientist from the Leibniz-Institute of Photonic Technology Jena (Leibniz IPHT) contributed, were published on 6thJune in the highly-cited journal Physical Review Letters.

Endoscopes allow doctors to see into a patient’s body like through a keyhole. Typically, the images are transmitted via a bundle of several hundreds of optical...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

Munich conference on asteroid detection, tracking and defense

13.06.2018 | Event News

2nd International Baltic Earth Conference in Denmark: “The Baltic Sea region in Transition”

08.06.2018 | Event News

ISEKI_Food 2018: Conference with Holistic View of Food Production

05.06.2018 | Event News

 
Latest News

Creating a new composite fuel for new-generation fast reactors

20.06.2018 | Materials Sciences

Game-changing finding pushes 3D-printing to the molecular limit

20.06.2018 | Materials Sciences

Could this material enable autonomous vehicles to come to market sooner?

20.06.2018 | Materials Sciences

VideoLinks
Science & Research
Overview of more VideoLinks >>>