Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Fermi Large Area Telescope reveals pulsing gamma-ray sources

11.09.2009
Scientists at the Naval Research Laboratory (NRL) Space Science Division and a team of international researchers have positively identified cosmic sources of gamma-ray emissions through the discovery of 16 pulsating neutron stars.

Using the Large Area Telescope (LAT), the primary instrument on NASA's Fermi Gamma-ray Space Telescope satellite, the discoveries were made by conducting blind frequency searches on the sparse photon data provided by the LAT. The photons had energies between 20 Mega-electron-volts (MeVs) and 300 Giga-electron-volts (GeVs)— tens of millions to hundreds of billions of times more energetic than the photons we see with the human eye.

A second study, published at the same time, announced the detection of gamma-ray pulsations from eight Galactic millisecond pulsars (MSPs). Millisecond pulsars spin hundreds of times per second, but have magnetic fields 10,000 times lower than normal pulsars. These discoveries confirm that they, too, can produce powerful gamma-ray emissions.

"Fermi has truly unprecedented power for discovering and studying gamma ray pulsars," said Paul Ray astrophysicist, Naval Research Laboratory. "Since the demise of the Compton Gamma Ray Observatory a decade ago, we've wondered about the nature of unidentified gamma-ray sources it detected in our galaxy. These studies from Fermi lift the veil on many of them."

Pulsars are rapidly rotating, highly magnetized neutron stars that can emit radiation across the electromagnetic spectrum. Prior to the launch of Fermi, gamma-ray pulsations were only detected from pulsars previously discovered using radio or X-ray telescopes. Radio telescopes can detect pulsars only if one of the narrow radio beams is directly aimed at the telescope; otherwise the pulsar can remain hidden. The much broader gamma-ray beams allowed the new pulsars to be discovered as part of a comprehensive search for periodic gamma-ray emission using five months of Fermi LAT data and new computational techniques.

The newly discovered pulsars, with rotation periods that range from 48 to 444 milliseconds, help reveal the geometry of emission from rotation-powered pulsars and provide valuable information on population statistics, the energetics of pulsar wind nebulae and supernova remnants. A wide variety of astrophysical phenomena, such as pulsars, active galactic nuclei, gamma-ray bursts and some binary star systems are known to produce photons exceeding many MeVs.

"The Fermi LAT makes it possible for us to pinpoint neutron stars," said Eric Grove, astrophysicist and LAT Commissioner, NRL Space Science Division. "The combination of a very large collecting area, large field of view, and precision timing from an on-board Global Positioning System receiver enables the LAT to see sources that were far beyond the reach of previous gamma-ray telescopes."

Results of the two studies: "Detection of 16 gamma-ray pulsars through blind frequency searches using the Fermi LAT;" and "A population of gamma-ray millisecond pulsars seen with the Fermi Large Area Telescope" were published on July 2, 2009 in Science Express and may be found on the Internet at http://www.scienceexpress.org.

The LAT project is funded in the United States by NASA and developed in collaboration with the Department of Energy and by academic institutions and government agencies in France, Italy, Japan, and Sweden.

The Naval Research Laboratory is the Department of the Navy's corporate laboratory. NRL conducts a broad program of scientific research, technology, and advanced development. The Laboratory, with a total complement of nearly 2,500 personnel, is located in southwest Washington, DC, with other major sites at the Stennis Space Center, MS; and Monterey, CA

Daniel Parry | EurekAlert!
Further information:
http://www.nrl.navy.mil

More articles from Physics and Astronomy:

nachricht Shape matters when light meets atom
05.12.2016 | Centre for Quantum Technologies at the National University of Singapore

nachricht Climate cycles may explain how running water carved Mars' surface features
02.12.2016 | Penn State

All articles from Physics and Astronomy >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Novel silicon etching technique crafts 3-D gradient refractive index micro-optics

A multi-institutional research collaboration has created a novel approach for fabricating three-dimensional micro-optics through the shape-defined formation of porous silicon (PSi), with broad impacts in integrated optoelectronics, imaging, and photovoltaics.

Working with colleagues at Stanford and The Dow Chemical Company, researchers at the University of Illinois at Urbana-Champaign fabricated 3-D birefringent...

Im Focus: Quantum Particles Form Droplets

In experiments with magnetic atoms conducted at extremely low temperatures, scientists have demonstrated a unique phase of matter: The atoms form a new type of quantum liquid or quantum droplet state. These so called quantum droplets may preserve their form in absence of external confinement because of quantum effects. The joint team of experimental physicists from Innsbruck and theoretical physicists from Hannover report on their findings in the journal Physical Review X.

“Our Quantum droplets are in the gas phase but they still drop like a rock,” explains experimental physicist Francesca Ferlaino when talking about the...

Im Focus: MADMAX: Max Planck Institute for Physics takes up axion research

The Max Planck Institute for Physics (MPP) is opening up a new research field. A workshop from November 21 - 22, 2016 will mark the start of activities for an innovative axion experiment. Axions are still only purely hypothetical particles. Their detection could solve two fundamental problems in particle physics: What dark matter consists of and why it has not yet been possible to directly observe a CP violation for the strong interaction.

The “MADMAX” project is the MPP’s commitment to axion research. Axions are so far only a theoretical prediction and are difficult to detect: on the one hand,...

Im Focus: Molecules change shape when wet

Broadband rotational spectroscopy unravels structural reshaping of isolated molecules in the gas phase to accommodate water

In two recent publications in the Journal of Chemical Physics and in the Journal of Physical Chemistry Letters, researchers around Melanie Schnell from the Max...

Im Focus: Fraunhofer ISE Develops Highly Compact, High Frequency DC/DC Converter for Aviation

The efficiency of power electronic systems is not solely dependent on electrical efficiency but also on weight, for example, in mobile systems. When the weight of relevant components and devices in airplanes, for instance, is reduced, fuel savings can be achieved and correspondingly greenhouse gas emissions decreased. New materials and components based on gallium nitride (GaN) can help to reduce weight and increase the efficiency. With these new materials, power electronic switches can be operated at higher switching frequency, resulting in higher power density and lower material costs.

Researchers at the Fraunhofer Institute for Solar Energy Systems ISE together with partners have investigated how these materials can be used to make power...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

ICTM Conference 2017: Production technology for turbomachine manufacturing of the future

16.11.2016 | Event News

Innovation Day Laser Technology – Laser Additive Manufacturing

01.11.2016 | Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

 
Latest News

Researchers uncover protein-based “cancer signature”

05.12.2016 | Life Sciences

The Nagoya Protocol Creates Disadvantages for Many Countries when Applied to Microorganisms

05.12.2016 | Life Sciences

UTSA study describes new minimally invasive device to treat cancer and other illnesses

02.12.2016 | Medical Engineering

VideoLinks
B2B-VideoLinks
More VideoLinks >>>