Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Fermi Detects Gamma-rays from Exploding Nova

24.08.2010
Using the Large Area Telescope (LAT) onboard NASA's Fermi Gamma-ray Space Telescope satellite, astronomers have detected gamma rays from a nova for the first time, a finding that surprises both observers and theorists. The discovery dispels the long-held idea that nova explosions are not powerful enough to produce such high-energy radiation. These findings are published in the August 13th edition of Science with Teddy Cheung, an astrophysicist at the Naval Research Laboratory, as the lead author.

A nova is a sudden, rapid increase in the brightness of a star. The explosion occurs when a white dwarf ignites in an enormous thermonuclear explosion. The newly detected explosion is equivalent to about 1,000 times the energy that the sun gives off every year. However, compared to what Fermi is capable of detecting, this exploding nova is a relatively modest event.

Gamma rays are the most energetic form of light, and scientists believe the observed gamma-ray emission arises as a million-mile-per-hour shock wave races from the site of the explosion. Fermi's LAT detected the nova for 15 days.

The nova explosion was first noticed on March 11, when amateur astronomers Koichi Nishiyama and Fujio Kabashima in Miyaki-cho, Saga Prefecture, imaged a dramatic change in the brightness of a star in the constellation Cygnus. They knew that the star, known as V407 Cyg, was 10 times brighter than it appeared in an image they had taken three days earlier.

The amateur astronomers contacted Hiroyuki Maehara at Kyoto University, who in turn notified astronomers around the world asking for follow-up observations.

"A few days later, automatic processing of data from Fermi's LAT alerted us to a new high-energy gamma-ray source at the same location as the nova," said NRL's Cheung. "When we looked closer, we found that the LAT had detected the first gamma rays at about the same time as the nova's discovery."

The white dwarf star V407 Cyg lies 9,000 light-years away in the plane of our Milky Way galaxy. The system contains a compact white dwarf and a red giant star about 500 times the size of the sun.

The red giant star's outermost atmosphere is leaking away into space in a manner similar to the solar wind produced by the sun, but with a stronger flow.

The white dwarf star captures some of this gas, which accumulates on the surface of the star. With the passage of time, the gas eventually becomes hot and dense enough to fuse into helium. This energy-producing process triggers a runaway reaction that explodes the accumulated gas. The white dwarf itself, however, remains intact.

The explosion creates a hot, dense, expanding shell called a shock front, composed of high-speed particles, ionized gas and magnetic fields. The spectra obtained by ground-based optical telescopes from this explosion reveal that the shock wave expanded at 7 million miles per hour -- or nearly 1 percent the speed of light.

The magnetic fields trap particles within the shell and whip them up to tremendous energies. Before they can escape, the particles reach velocities near the speed of light. Scientists say that the gamma rays likely result when these accelerated particles smashed into the red giant's wind.

"We know that the remnants of much more powerful supernova explosions can trap and accelerate particles like this, but no one suspected that the magnetic fields in novae were strong enough to do it as well," said NRL's Soebur Razzaque. Supernova remnants endure for 100,000 years and produce radiations that affect regions of space thousands of light-years across.

NRL's Kent Wood compares astronomical studies of supernova remnants to looking at images in a photo album. "It takes thousands of years for supernova remnants to evolve, but with this nova we've watched the same kinds of changes over just a few days," he said. "We've gone from a photo album to a time-lapse movie."

The calorimeter subsystem of the Fermi LAT was developed at NRL and the environmental testing of both the LAT and the full Fermi observatory was conducted at NRL under the guidance of LAT Co-Principal Investigator Dr. W. Neil Johnson and LAT Commissioner Dr. J. Eric Grove, both NRL astrophysicists. The LAT project is funded in the United States by NASA and the Department of Energy in collaboration with academic institutions and government agencies in France, Italy, Japan, and Sweden.

Donna McKinney | EurekAlert!
Further information:
http://www.nrl.navy.mil

More articles from Physics and Astronomy:

nachricht Tune your radio: galaxies sing while forming stars
21.02.2017 | Max-Planck-Institut für Radioastronomie

nachricht Breakthrough with a chain of gold atoms
17.02.2017 | Universität Konstanz

All articles from Physics and Astronomy >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Breakthrough with a chain of gold atoms

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

Im Focus: DNA repair: a new letter in the cell alphabet

Results reveal how discoveries may be hidden in scientific “blind spots”

Cells need to repair damaged DNA in our genes to prevent the development of cancer and other diseases. Our cells therefore activate and send “repair-proteins”...

Im Focus: Dresdner scientists print tomorrow’s world

The Fraunhofer IWS Dresden and Technische Universität Dresden inaugurated their jointly operated Center for Additive Manufacturing Dresden (AMCD) with a festive ceremony on February 7, 2017. Scientists from various disciplines perform research on materials, additive manufacturing processes and innovative technologies, which build up components in a layer by layer process. This technology opens up new horizons for component design and combinations of functions. For example during fabrication, electrical conductors and sensors are already able to be additively manufactured into components. They provide information about stress conditions of a product during operation.

The 3D-printing technology, or additive manufacturing as it is often called, has long made the step out of scientific research laboratories into industrial...

Im Focus: Mimicking nature's cellular architectures via 3-D printing

Research offers new level of control over the structure of 3-D printed materials

Nature does amazing things with limited design materials. Grass, for example, can support its own weight, resist strong wind loads, and recover after being...

Im Focus: Three Magnetic States for Each Hole

Nanometer-scale magnetic perforated grids could create new possibilities for computing. Together with international colleagues, scientists from the Helmholtz Zentrum Dresden-Rossendorf (HZDR) have shown how a cobalt grid can be reliably programmed at room temperature. In addition they discovered that for every hole ("antidot") three magnetic states can be configured. The results have been published in the journal "Scientific Reports".

Physicist Dr. Rantej Bali from the HZDR, together with scientists from Singapore and Australia, designed a special grid structure in a thin layer of cobalt in...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Booth and panel discussion – The Lindau Nobel Laureate Meetings at the AAAS 2017 Annual Meeting

13.02.2017 | Event News

Complex Loading versus Hidden Reserves

10.02.2017 | Event News

International Conference on Crystal Growth in Freiburg

09.02.2017 | Event News

 
Latest News

Impacts of mass coral die-off on Indian Ocean reefs revealed

21.02.2017 | Earth Sciences

Novel breast tomosynthesis technique reduces screening recall rate

21.02.2017 | Medical Engineering

Use your Voice – and Smart Homes will “LISTEN”

21.02.2017 | Trade Fair News

VideoLinks
B2B-VideoLinks
More VideoLinks >>>