Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Fermi Detects Gamma-rays from Exploding Nova

24.08.2010
Using the Large Area Telescope (LAT) onboard NASA's Fermi Gamma-ray Space Telescope satellite, astronomers have detected gamma rays from a nova for the first time, a finding that surprises both observers and theorists. The discovery dispels the long-held idea that nova explosions are not powerful enough to produce such high-energy radiation. These findings are published in the August 13th edition of Science with Teddy Cheung, an astrophysicist at the Naval Research Laboratory, as the lead author.

A nova is a sudden, rapid increase in the brightness of a star. The explosion occurs when a white dwarf ignites in an enormous thermonuclear explosion. The newly detected explosion is equivalent to about 1,000 times the energy that the sun gives off every year. However, compared to what Fermi is capable of detecting, this exploding nova is a relatively modest event.

Gamma rays are the most energetic form of light, and scientists believe the observed gamma-ray emission arises as a million-mile-per-hour shock wave races from the site of the explosion. Fermi's LAT detected the nova for 15 days.

The nova explosion was first noticed on March 11, when amateur astronomers Koichi Nishiyama and Fujio Kabashima in Miyaki-cho, Saga Prefecture, imaged a dramatic change in the brightness of a star in the constellation Cygnus. They knew that the star, known as V407 Cyg, was 10 times brighter than it appeared in an image they had taken three days earlier.

The amateur astronomers contacted Hiroyuki Maehara at Kyoto University, who in turn notified astronomers around the world asking for follow-up observations.

"A few days later, automatic processing of data from Fermi's LAT alerted us to a new high-energy gamma-ray source at the same location as the nova," said NRL's Cheung. "When we looked closer, we found that the LAT had detected the first gamma rays at about the same time as the nova's discovery."

The white dwarf star V407 Cyg lies 9,000 light-years away in the plane of our Milky Way galaxy. The system contains a compact white dwarf and a red giant star about 500 times the size of the sun.

The red giant star's outermost atmosphere is leaking away into space in a manner similar to the solar wind produced by the sun, but with a stronger flow.

The white dwarf star captures some of this gas, which accumulates on the surface of the star. With the passage of time, the gas eventually becomes hot and dense enough to fuse into helium. This energy-producing process triggers a runaway reaction that explodes the accumulated gas. The white dwarf itself, however, remains intact.

The explosion creates a hot, dense, expanding shell called a shock front, composed of high-speed particles, ionized gas and magnetic fields. The spectra obtained by ground-based optical telescopes from this explosion reveal that the shock wave expanded at 7 million miles per hour -- or nearly 1 percent the speed of light.

The magnetic fields trap particles within the shell and whip them up to tremendous energies. Before they can escape, the particles reach velocities near the speed of light. Scientists say that the gamma rays likely result when these accelerated particles smashed into the red giant's wind.

"We know that the remnants of much more powerful supernova explosions can trap and accelerate particles like this, but no one suspected that the magnetic fields in novae were strong enough to do it as well," said NRL's Soebur Razzaque. Supernova remnants endure for 100,000 years and produce radiations that affect regions of space thousands of light-years across.

NRL's Kent Wood compares astronomical studies of supernova remnants to looking at images in a photo album. "It takes thousands of years for supernova remnants to evolve, but with this nova we've watched the same kinds of changes over just a few days," he said. "We've gone from a photo album to a time-lapse movie."

The calorimeter subsystem of the Fermi LAT was developed at NRL and the environmental testing of both the LAT and the full Fermi observatory was conducted at NRL under the guidance of LAT Co-Principal Investigator Dr. W. Neil Johnson and LAT Commissioner Dr. J. Eric Grove, both NRL astrophysicists. The LAT project is funded in the United States by NASA and the Department of Energy in collaboration with academic institutions and government agencies in France, Italy, Japan, and Sweden.

Donna McKinney | EurekAlert!
Further information:
http://www.nrl.navy.mil

More articles from Physics and Astronomy:

nachricht Temperature-controlled fiber-optic light source with liquid core
20.06.2018 | Leibniz-Institut für Photonische Technologien e. V.

nachricht New material for splitting water
19.06.2018 | American Institute of Physics

All articles from Physics and Astronomy >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Temperature-controlled fiber-optic light source with liquid core

In a recent publication in the renowned journal Optica, scientists of Leibniz-Institute of Photonic Technology (Leibniz IPHT) in Jena showed that they can accurately control the optical properties of liquid-core fiber lasers and therefore their spectral band width by temperature and pressure tuning.

Already last year, the researchers provided experimental proof of a new dynamic of hybrid solitons– temporally and spectrally stationary light waves resulting...

Im Focus: Overdosing on Calcium

Nano crystals impact stem cell fate during bone formation

Scientists from the University of Freiburg and the University of Basel identified a master regulator for bone regeneration. Prasad Shastri, Professor of...

Im Focus: AchemAsia 2019 will take place in Shanghai

Moving into its fourth decade, AchemAsia is setting out for new horizons: The International Expo and Innovation Forum for Sustainable Chemical Production will take place from 21-23 May 2019 in Shanghai, China. With an updated event profile, the eleventh edition focusses on topics that are especially relevant for the Chinese process industry, putting a strong emphasis on sustainability and innovation.

Founded in 1989 as a spin-off of ACHEMA to cater to the needs of China’s then developing industry, AchemAsia has since grown into a platform where the latest...

Im Focus: First real-time test of Li-Fi utilization for the industrial Internet of Things

The BMBF-funded OWICELLS project was successfully completed with a final presentation at the BMW plant in Munich. The presentation demonstrated a Li-Fi communication with a mobile robot, while the robot carried out usual production processes (welding, moving and testing parts) in a 5x5m² production cell. The robust, optical wireless transmission is based on spatial diversity; in other words, data is sent and received simultaneously by several LEDs and several photodiodes. The system can transmit data at more than 100 Mbit/s and five milliseconds latency.

Modern production technologies in the automobile industry must become more flexible in order to fulfil individual customer requirements.

Im Focus: Sharp images with flexible fibers

An international team of scientists has discovered a new way to transfer image information through multimodal fibers with almost no distortion - even if the fiber is bent. The results of the study, to which scientist from the Leibniz-Institute of Photonic Technology Jena (Leibniz IPHT) contributed, were published on 6thJune in the highly-cited journal Physical Review Letters.

Endoscopes allow doctors to see into a patient’s body like through a keyhole. Typically, the images are transmitted via a bundle of several hundreds of optical...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

Munich conference on asteroid detection, tracking and defense

13.06.2018 | Event News

2nd International Baltic Earth Conference in Denmark: “The Baltic Sea region in Transition”

08.06.2018 | Event News

ISEKI_Food 2018: Conference with Holistic View of Food Production

05.06.2018 | Event News

 
Latest News

Better model of water under extreme conditions could aid understanding of Earth's mantle

21.06.2018 | Earth Sciences

What are the effects of coral reef marine protected areas?

21.06.2018 | Life Sciences

The Janus head of the South Asian monsoon

21.06.2018 | Earth Sciences

VideoLinks
Science & Research
Overview of more VideoLinks >>>