Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Fermi Detects Gamma-rays from Exploding Nova

24.08.2010
Using the Large Area Telescope (LAT) onboard NASA's Fermi Gamma-ray Space Telescope satellite, astronomers have detected gamma rays from a nova for the first time, a finding that surprises both observers and theorists. The discovery dispels the long-held idea that nova explosions are not powerful enough to produce such high-energy radiation. These findings are published in the August 13th edition of Science with Teddy Cheung, an astrophysicist at the Naval Research Laboratory, as the lead author.

A nova is a sudden, rapid increase in the brightness of a star. The explosion occurs when a white dwarf ignites in an enormous thermonuclear explosion. The newly detected explosion is equivalent to about 1,000 times the energy that the sun gives off every year. However, compared to what Fermi is capable of detecting, this exploding nova is a relatively modest event.

Gamma rays are the most energetic form of light, and scientists believe the observed gamma-ray emission arises as a million-mile-per-hour shock wave races from the site of the explosion. Fermi's LAT detected the nova for 15 days.

The nova explosion was first noticed on March 11, when amateur astronomers Koichi Nishiyama and Fujio Kabashima in Miyaki-cho, Saga Prefecture, imaged a dramatic change in the brightness of a star in the constellation Cygnus. They knew that the star, known as V407 Cyg, was 10 times brighter than it appeared in an image they had taken three days earlier.

The amateur astronomers contacted Hiroyuki Maehara at Kyoto University, who in turn notified astronomers around the world asking for follow-up observations.

"A few days later, automatic processing of data from Fermi's LAT alerted us to a new high-energy gamma-ray source at the same location as the nova," said NRL's Cheung. "When we looked closer, we found that the LAT had detected the first gamma rays at about the same time as the nova's discovery."

The white dwarf star V407 Cyg lies 9,000 light-years away in the plane of our Milky Way galaxy. The system contains a compact white dwarf and a red giant star about 500 times the size of the sun.

The red giant star's outermost atmosphere is leaking away into space in a manner similar to the solar wind produced by the sun, but with a stronger flow.

The white dwarf star captures some of this gas, which accumulates on the surface of the star. With the passage of time, the gas eventually becomes hot and dense enough to fuse into helium. This energy-producing process triggers a runaway reaction that explodes the accumulated gas. The white dwarf itself, however, remains intact.

The explosion creates a hot, dense, expanding shell called a shock front, composed of high-speed particles, ionized gas and magnetic fields. The spectra obtained by ground-based optical telescopes from this explosion reveal that the shock wave expanded at 7 million miles per hour -- or nearly 1 percent the speed of light.

The magnetic fields trap particles within the shell and whip them up to tremendous energies. Before they can escape, the particles reach velocities near the speed of light. Scientists say that the gamma rays likely result when these accelerated particles smashed into the red giant's wind.

"We know that the remnants of much more powerful supernova explosions can trap and accelerate particles like this, but no one suspected that the magnetic fields in novae were strong enough to do it as well," said NRL's Soebur Razzaque. Supernova remnants endure for 100,000 years and produce radiations that affect regions of space thousands of light-years across.

NRL's Kent Wood compares astronomical studies of supernova remnants to looking at images in a photo album. "It takes thousands of years for supernova remnants to evolve, but with this nova we've watched the same kinds of changes over just a few days," he said. "We've gone from a photo album to a time-lapse movie."

The calorimeter subsystem of the Fermi LAT was developed at NRL and the environmental testing of both the LAT and the full Fermi observatory was conducted at NRL under the guidance of LAT Co-Principal Investigator Dr. W. Neil Johnson and LAT Commissioner Dr. J. Eric Grove, both NRL astrophysicists. The LAT project is funded in the United States by NASA and the Department of Energy in collaboration with academic institutions and government agencies in France, Italy, Japan, and Sweden.

Donna McKinney | EurekAlert!
Further information:
http://www.nrl.navy.mil

More articles from Physics and Astronomy:

nachricht When helium behaves like a black hole
22.03.2017 | University of Vermont

nachricht Astronomers hazard a ride in a 'drifting carousel' to understand pulsating stars
22.03.2017 | International Centre for Radio Astronomy Research

All articles from Physics and Astronomy >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Giant Magnetic Fields in the Universe

Astronomers from Bonn and Tautenburg in Thuringia (Germany) used the 100-m radio telescope at Effelsberg to observe several galaxy clusters. At the edges of these large accumulations of dark matter, stellar systems (galaxies), hot gas, and charged particles, they found magnetic fields that are exceptionally ordered over distances of many million light years. This makes them the most extended magnetic fields in the universe known so far.

The results will be published on March 22 in the journal „Astronomy & Astrophysics“.

Galaxy clusters are the largest gravitationally bound structures in the universe. With a typical extent of about 10 million light years, i.e. 100 times the...

Im Focus: Tracing down linear ubiquitination

Researchers at the Goethe University Frankfurt, together with partners from the University of Tübingen in Germany and Queen Mary University as well as Francis Crick Institute from London (UK) have developed a novel technology to decipher the secret ubiquitin code.

Ubiquitin is a small protein that can be linked to other cellular proteins, thereby controlling and modulating their functions. The attachment occurs in many...

Im Focus: Perovskite edges can be tuned for optoelectronic performance

Layered 2D material improves efficiency for solar cells and LEDs

In the eternal search for next generation high-efficiency solar cells and LEDs, scientists at Los Alamos National Laboratory and their partners are creating...

Im Focus: Polymer-coated silicon nanosheets as alternative to graphene: A perfect team for nanoelectronics

Silicon nanosheets are thin, two-dimensional layers with exceptional optoelectronic properties very similar to those of graphene. Albeit, the nanosheets are less stable. Now researchers at the Technical University of Munich (TUM) have, for the first time ever, produced a composite material combining silicon nanosheets and a polymer that is both UV-resistant and easy to process. This brings the scientists a significant step closer to industrial applications like flexible displays and photosensors.

Silicon nanosheets are thin, two-dimensional layers with exceptional optoelectronic properties very similar to those of graphene. Albeit, the nanosheets are...

Im Focus: Researchers Imitate Molecular Crowding in Cells

Enzymes behave differently in a test tube compared with the molecular scrum of a living cell. Chemists from the University of Basel have now been able to simulate these confined natural conditions in artificial vesicles for the first time. As reported in the academic journal Small, the results are offering better insight into the development of nanoreactors and artificial organelles.

Enzymes behave differently in a test tube compared with the molecular scrum of a living cell. Chemists from the University of Basel have now been able to...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

International Land Use Symposium ILUS 2017: Call for Abstracts and Registration open

20.03.2017 | Event News

CONNECT 2017: International congress on connective tissue

14.03.2017 | Event News

ICTM Conference: Turbine Construction between Big Data and Additive Manufacturing

07.03.2017 | Event News

 
Latest News

Pulverizing electronic waste is green, clean -- and cold

22.03.2017 | Materials Sciences

Astronomers hazard a ride in a 'drifting carousel' to understand pulsating stars

22.03.2017 | Physics and Astronomy

New gel-like coating beefs up the performance of lithium-sulfur batteries

22.03.2017 | Materials Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>