Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Fermi's Large Area Telescope Sees Surprising Flares in Crab Nebula

07.01.2011
The Crab Nebula, one of our best-known and most stable neighbors in the winter sky, is shocking scientists with its propensity for fireworks—gamma-ray flares set off by the most energetic particles ever traced to a specific astronomical object. The discovery, reported today by scientists working with two orbiting telescopes, is leading researchers to rethink their ideas of how cosmic particles are accelerated.

"We were dumbfounded," said Roger Blandford, who directs the Kavli Institute for Particle Astrophysics and Cosmology, jointly located at the Department of Energy's SLAC National Accelerator Laboratory and Stanford University. "It's an emblematic object," he said. The Crab Nebula, also known as M1, was the first astronomical object catalogued in 1771 by Charles Messier. "It's a big deal historically," Blandford continued, "and we're making an amazing discovery about it."

Blandford was part of a KIPAC team led by scientists Rolf Buehler and Stefan Funk that used observations from the Large Area Telescope, one of two primary instruments aboard NASA's Fermi Gamma-ray Space Telescope, to confirm one flare and discover another. Their report was posted online today in Science Express alongside a report from the Italian orbiting telescope Astro-rivelatore Gamma a Immagini LEggero, or AGILE, which also detected gamma-ray flares in the Crab Nebula.

The Crab Nebula, and the rapidly spinning neutron star that powers it, are the remnants of a supernova explosion documented by Chinese and Middle Eastern astronomers in 1054. After shedding much of its outer gases and dust, the dying star collapsed into a pulsar, a super-dense, rapidly spinning ball of neutrons. The Crab Nebula's pulsar emits a pulse of radiation every 33 milliseconds, like clockwork.

Though it's only 10 miles across, the amount of energy the pulsar releases is enormous, lighting up the Crab Nebula until it shines 75,000 times more brightly than the sun. Most of this energy is contained in a particle wind of energetic electrons and positrons traveling close to the speed of light. These electrons and positrons interact with magnetic fields and low-energy photons to produce the famous glowing tendrils of dust and gas Messier mistook for a comet over 200 years ago.

The particles are even forceful enough to produce the gamma rays the LAT normally observes during its regular surveys of the sky. But those particles did not cause the dramatic flares.

Each of the two flares the LAT observed lasted a few days before the Crab Nebula's gamma-ray output returned to more normal levels. According to Funk, the short duration of the flares points to synchrotron radiation, or radiation emitted by electrons accelerating in the magnetic field of the nebula, as the cause. And not just any accelerated electrons: the flares were caused by super-charged electrons of up to 1015 electron volts, or 10 quadrillion electron volts, approximately 1,000 times more energetic than the protons accelerated by the Large Hadron Collider in Europe, the world's most powerful man-made particle accelerator, and more than 15 orders of magnitude greater than photons of visible light.

"The strength of the gamma-ray flares shows us they were emitted by the highest-energy particles we can associate with any discrete astrophysical object," Funk said.

Not only are the electrons surprisingly energetic, added Buehler, but, "the fact that the intensity is varying so rapidly means the acceleration has to happen extremely fast." This challenges current theories about the way cosmic particles are accelerated. These theories cannot easily account for the extreme energies of the electrons or the speed with which they're accelerated.

The discovery of the Crab Nebula's gamma-ray flares raises one obvious question: how can the nebula do that? Obvious question, but no obvious answers. The KIPAC scientists all agree they need a closer look at higher resolutions and in a variety of wavelengths before they can make any definitive statements. The next time the Crab Nebula flares, the Fermi LAT team will not be the only team gathering data. They'll need all the help they can get to decipher the mysteries of the Crab Nebula

"We thought we knew the essential ingredients of the Crab Nebula," Funk said, "but that's no longer true. It's still surprising us."

The Fermi Gamma-ray Space Telescope was constructed through an astrophysics and particle physics partnership developed by NASA in collaboration with the U.S. Department of Energy Office of Science, along with important contributions from academic institutions and partners in France, Germany, Italy, Japan, Sweden, and the United States. SLAC National Accelerator Laboratory managed construction of the LAT and now plays the central role in science operations, data processing and making scientific data available to collaborators for analysis.

SLAC is a multi-program laboratory exploring frontier questions in photon science, astrophysics, particle physics and accelerator research. Located in Menlo Park, California, SLAC is operated by Stanford University for the U.S. Department of Energy Office of Science.

Melinda Lee | EurekAlert!
Further information:
http://www.stanford.edu

More articles from Physics and Astronomy:

nachricht Hubble sees Neptune's mysterious shrinking storm
16.02.2018 | NASA/Goddard Space Flight Center

nachricht Supermassive black hole model predicts characteristic light signals at cusp of collision
15.02.2018 | Rochester Institute of Technology

All articles from Physics and Astronomy >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Demonstration of a single molecule piezoelectric effect

Breakthrough provides a new concept of the design of molecular motors, sensors and electricity generators at nanoscale

Researchers from the Institute of Organic Chemistry and Biochemistry of the CAS (IOCB Prague), Institute of Physics of the CAS (IP CAS) and Palacký University...

Im Focus: Hybrid optics bring color imaging using ultrathin metalenses into focus

For photographers and scientists, lenses are lifesavers. They reflect and refract light, making possible the imaging systems that drive discovery through the microscope and preserve history through cameras.

But today's glass-based lenses are bulky and resist miniaturization. Next-generation technologies, such as ultrathin cameras or tiny microscopes, require...

Im Focus: Stem cell divisions in the adult brain seen for the first time

Scientists from the University of Zurich have succeeded for the first time in tracking individual stem cells and their neuronal progeny over months within the intact adult brain. This study sheds light on how new neurons are produced throughout life.

The generation of new nerve cells was once thought to taper off at the end of embryonic development. However, recent research has shown that the adult brain...

Im Focus: Interference as a new method for cooling quantum devices

Theoretical physicists propose to use negative interference to control heat flow in quantum devices. Study published in Physical Review Letters

Quantum computer parts are sensitive and need to be cooled to very low temperatures. Their tiny size makes them particularly susceptible to a temperature...

Im Focus: Autonomous 3D scanner supports individual manufacturing processes

Let’s say the armrest is broken in your vintage car. As things stand, you would need a lot of luck and persistence to find the right spare part. But in the world of Industrie 4.0 and production with batch sizes of one, you can simply scan the armrest and print it out. This is made possible by the first ever 3D scanner capable of working autonomously and in real time. The autonomous scanning system will be on display at the Hannover Messe Preview on February 6 and at the Hannover Messe proper from April 23 to 27, 2018 (Hall 6, Booth A30).

Part of the charm of vintage cars is that they stopped making them long ago, so it is special when you do see one out on the roads. If something breaks or...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

2nd International Conference on High Temperature Shape Memory Alloys (HTSMAs)

15.02.2018 | Event News

Aachen DC Grid Summit 2018

13.02.2018 | Event News

How Global Climate Policy Can Learn from the Energy Transition

12.02.2018 | Event News

 
Latest News

Fingerprints of quantum entanglement

16.02.2018 | Information Technology

'Living bandages': NUST MISIS scientists develop biocompatible anti-burn nanofibers

16.02.2018 | Health and Medicine

Hubble sees Neptune's mysterious shrinking storm

16.02.2018 | Physics and Astronomy

VideoLinks
Science & Research
Overview of more VideoLinks >>>