Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Femtoseconds lasers help formation flying in space

06.10.2009
The National Physical Laboratory (NPL) has helped to establish that femtosecond comb lasers can provide accurate measurement of absolute distance in formation flying space missions.

NPL, along with collaborators, produced technical reports for the European Space Agency. The conclusions demonstrated that the lasers were a suitable method for measurement in such missions.

Formation flying missions involve multiple spacecrafts flying between tens and hundreds of metres apart, which autonomously control their position relative to each other. The benefit of such missions is they can gather data in a completely different way to a standard spacecraft – the formation can effectively act as one large sensor.

Measuring absolute distance between the formation spacecraft is critical to mission success. Femtosecond comb lasers are an accurate way of making such measurements. The lasers emit light with very short pulses – each lasting just a few femtoseconds. A femtosecond is one billionth of one millionth of a second. The short pulses allow time of flight measurements to be used to determine distance to a few microns.

For example, in the proposed International X-ray Observatory mission, due to launch after 2020, it is thought that the 25 metre spacecraft will require highly accurate measurement of the absolute distance between the front and back of the spacecraft because the craft's body will be flexible.

For the x-ray images to stay in focus, the position and orientation of the mirror at one end will have to be known, and controlled, to roughly 300 microns in length and 10 arc seconds in angle. Otherwise the telescope will not be able to resolve an image and the mission would fail.

Achieving this accuracy is enormously challenging on board a spacecraft. Instrumentation requires such accuracy, but must also be robust enough to survive launch and the ravages of space.

The other challenge in formation flying is achieving the formation itself, which is done once the spacecrafts reach the appropriate region of space. The spacecraft orient themselves in relation to each other by plotting their positions relative to known stars, and then establish their lateral positions via laser pointers. Once the formation is established, it can be maintained via highly accurate absolute length measurements between the spacecrafts.

These kinds of missions could answer a lot of the 'big questions' in astronomy and cosmology – like 'is general relativity correct?', 'how did the universe develop following the Big Bang?', and 'where do all the magnetic fields in the universe come from?'.

Another mission, called LISA (Laser Interferometer Space Antenna) is being planned to look for gravity waves. This will involve three craft flying approximately 5 million km apart. In this case it is not necessary to know the absolute distance between the crafts, extremely small changes in their separation on timescales of 10 seconds to 10,000 seconds could be a sign that gravity waves have been detected.

Such missions stand to benefit from this project and the use of femtosecond combs, and a number of groups worldwide are developing other systems using such technology as distance measuring instruments.

Prototype systems will need to have uncertainty claims verified by a national standards laboratory, such as NPL. They will also need to fulfil strict specifications on size, weight and power consumption and undergo other tests (for example the system's ability to withstand strong gravitational fields or radiation) so that they can become fully 'space qualified'.

The European Space Agency (ESA) project to determine the suitability of femtosecond combs was known as 'HAALDM' (High Accuracy Absolute Long Distance Measurement). It involved NPL, Menlo Systems, the Laser Centre Vrije Universiteit Amsterdam, and Kayser-Threde.

David Lewis | EurekAlert!
Further information:
http://www.npl.co.uk

More articles from Physics and Astronomy:

nachricht First Juno science results supported by University of Leicester's Jupiter 'forecast'
26.05.2017 | University of Leicester

nachricht Measured for the first time: Direction of light waves changed by quantum effect
24.05.2017 | Vienna University of Technology

All articles from Physics and Astronomy >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Can the immune system be boosted against Staphylococcus aureus by delivery of messenger RNA?

Staphylococcus aureus is a feared pathogen (MRSA, multi-resistant S. aureus) due to frequent resistances against many antibiotics, especially in hospital infections. Researchers at the Paul-Ehrlich-Institut have identified immunological processes that prevent a successful immune response directed against the pathogenic agent. The delivery of bacterial proteins with RNA adjuvant or messenger RNA (mRNA) into immune cells allows the re-direction of the immune response towards an active defense against S. aureus. This could be of significant importance for the development of an effective vaccine. PLOS Pathogens has published these research results online on 25 May 2017.

Staphylococcus aureus (S. aureus) is a bacterium that colonizes by far more than half of the skin and the mucosa of adults, usually without causing infections....

Im Focus: A quantum walk of photons

Physicists from the University of Würzburg are capable of generating identical looking single light particles at the push of a button. Two new studies now demonstrate the potential this method holds.

The quantum computer has fuelled the imagination of scientists for decades: It is based on fundamentally different phenomena than a conventional computer....

Im Focus: Turmoil in sluggish electrons’ existence

An international team of physicists has monitored the scattering behaviour of electrons in a non-conducting material in real-time. Their insights could be beneficial for radiotherapy.

We can refer to electrons in non-conducting materials as ‘sluggish’. Typically, they remain fixed in a location, deep inside an atomic composite. It is hence...

Im Focus: Wafer-thin Magnetic Materials Developed for Future Quantum Technologies

Two-dimensional magnetic structures are regarded as a promising material for new types of data storage, since the magnetic properties of individual molecular building blocks can be investigated and modified. For the first time, researchers have now produced a wafer-thin ferrimagnet, in which molecules with different magnetic centers arrange themselves on a gold surface to form a checkerboard pattern. Scientists at the Swiss Nanoscience Institute at the University of Basel and the Paul Scherrer Institute published their findings in the journal Nature Communications.

Ferrimagnets are composed of two centers which are magnetized at different strengths and point in opposing directions. Two-dimensional, quasi-flat ferrimagnets...

Im Focus: World's thinnest hologram paves path to new 3-D world

Nano-hologram paves way for integration of 3-D holography into everyday electronics

An Australian-Chinese research team has created the world's thinnest hologram, paving the way towards the integration of 3D holography into everyday...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Marine Conservation: IASS Contributes to UN Ocean Conference in New York on 5-9 June

24.05.2017 | Event News

AWK Aachen Machine Tool Colloquium 2017: Internet of Production for Agile Enterprises

23.05.2017 | Event News

Dortmund MST Conference presents Individualized Healthcare Solutions with micro and nanotechnology

22.05.2017 | Event News

 
Latest News

How herpesviruses win the footrace against the immune system

26.05.2017 | Life Sciences

Water forms 'spine of hydration' around DNA, group finds

26.05.2017 | Life Sciences

First Juno science results supported by University of Leicester's Jupiter 'forecast'

26.05.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>