Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Femtoseconds lasers help formation flying in space

06.10.2009
The National Physical Laboratory (NPL) has helped to establish that femtosecond comb lasers can provide accurate measurement of absolute distance in formation flying space missions.

NPL, along with collaborators, produced technical reports for the European Space Agency. The conclusions demonstrated that the lasers were a suitable method for measurement in such missions.

Formation flying missions involve multiple spacecrafts flying between tens and hundreds of metres apart, which autonomously control their position relative to each other. The benefit of such missions is they can gather data in a completely different way to a standard spacecraft – the formation can effectively act as one large sensor.

Measuring absolute distance between the formation spacecraft is critical to mission success. Femtosecond comb lasers are an accurate way of making such measurements. The lasers emit light with very short pulses – each lasting just a few femtoseconds. A femtosecond is one billionth of one millionth of a second. The short pulses allow time of flight measurements to be used to determine distance to a few microns.

For example, in the proposed International X-ray Observatory mission, due to launch after 2020, it is thought that the 25 metre spacecraft will require highly accurate measurement of the absolute distance between the front and back of the spacecraft because the craft's body will be flexible.

For the x-ray images to stay in focus, the position and orientation of the mirror at one end will have to be known, and controlled, to roughly 300 microns in length and 10 arc seconds in angle. Otherwise the telescope will not be able to resolve an image and the mission would fail.

Achieving this accuracy is enormously challenging on board a spacecraft. Instrumentation requires such accuracy, but must also be robust enough to survive launch and the ravages of space.

The other challenge in formation flying is achieving the formation itself, which is done once the spacecrafts reach the appropriate region of space. The spacecraft orient themselves in relation to each other by plotting their positions relative to known stars, and then establish their lateral positions via laser pointers. Once the formation is established, it can be maintained via highly accurate absolute length measurements between the spacecrafts.

These kinds of missions could answer a lot of the 'big questions' in astronomy and cosmology – like 'is general relativity correct?', 'how did the universe develop following the Big Bang?', and 'where do all the magnetic fields in the universe come from?'.

Another mission, called LISA (Laser Interferometer Space Antenna) is being planned to look for gravity waves. This will involve three craft flying approximately 5 million km apart. In this case it is not necessary to know the absolute distance between the crafts, extremely small changes in their separation on timescales of 10 seconds to 10,000 seconds could be a sign that gravity waves have been detected.

Such missions stand to benefit from this project and the use of femtosecond combs, and a number of groups worldwide are developing other systems using such technology as distance measuring instruments.

Prototype systems will need to have uncertainty claims verified by a national standards laboratory, such as NPL. They will also need to fulfil strict specifications on size, weight and power consumption and undergo other tests (for example the system's ability to withstand strong gravitational fields or radiation) so that they can become fully 'space qualified'.

The European Space Agency (ESA) project to determine the suitability of femtosecond combs was known as 'HAALDM' (High Accuracy Absolute Long Distance Measurement). It involved NPL, Menlo Systems, the Laser Centre Vrije Universiteit Amsterdam, and Kayser-Threde.

David Lewis | EurekAlert!
Further information:
http://www.npl.co.uk

More articles from Physics and Astronomy:

nachricht When helium behaves like a black hole
22.03.2017 | University of Vermont

nachricht Astronomers hazard a ride in a 'drifting carousel' to understand pulsating stars
22.03.2017 | International Centre for Radio Astronomy Research

All articles from Physics and Astronomy >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Giant Magnetic Fields in the Universe

Astronomers from Bonn and Tautenburg in Thuringia (Germany) used the 100-m radio telescope at Effelsberg to observe several galaxy clusters. At the edges of these large accumulations of dark matter, stellar systems (galaxies), hot gas, and charged particles, they found magnetic fields that are exceptionally ordered over distances of many million light years. This makes them the most extended magnetic fields in the universe known so far.

The results will be published on March 22 in the journal „Astronomy & Astrophysics“.

Galaxy clusters are the largest gravitationally bound structures in the universe. With a typical extent of about 10 million light years, i.e. 100 times the...

Im Focus: Tracing down linear ubiquitination

Researchers at the Goethe University Frankfurt, together with partners from the University of Tübingen in Germany and Queen Mary University as well as Francis Crick Institute from London (UK) have developed a novel technology to decipher the secret ubiquitin code.

Ubiquitin is a small protein that can be linked to other cellular proteins, thereby controlling and modulating their functions. The attachment occurs in many...

Im Focus: Perovskite edges can be tuned for optoelectronic performance

Layered 2D material improves efficiency for solar cells and LEDs

In the eternal search for next generation high-efficiency solar cells and LEDs, scientists at Los Alamos National Laboratory and their partners are creating...

Im Focus: Polymer-coated silicon nanosheets as alternative to graphene: A perfect team for nanoelectronics

Silicon nanosheets are thin, two-dimensional layers with exceptional optoelectronic properties very similar to those of graphene. Albeit, the nanosheets are less stable. Now researchers at the Technical University of Munich (TUM) have, for the first time ever, produced a composite material combining silicon nanosheets and a polymer that is both UV-resistant and easy to process. This brings the scientists a significant step closer to industrial applications like flexible displays and photosensors.

Silicon nanosheets are thin, two-dimensional layers with exceptional optoelectronic properties very similar to those of graphene. Albeit, the nanosheets are...

Im Focus: Researchers Imitate Molecular Crowding in Cells

Enzymes behave differently in a test tube compared with the molecular scrum of a living cell. Chemists from the University of Basel have now been able to simulate these confined natural conditions in artificial vesicles for the first time. As reported in the academic journal Small, the results are offering better insight into the development of nanoreactors and artificial organelles.

Enzymes behave differently in a test tube compared with the molecular scrum of a living cell. Chemists from the University of Basel have now been able to...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

International Land Use Symposium ILUS 2017: Call for Abstracts and Registration open

20.03.2017 | Event News

CONNECT 2017: International congress on connective tissue

14.03.2017 | Event News

ICTM Conference: Turbine Construction between Big Data and Additive Manufacturing

07.03.2017 | Event News

 
Latest News

Pulverizing electronic waste is green, clean -- and cold

22.03.2017 | Materials Sciences

Astronomers hazard a ride in a 'drifting carousel' to understand pulsating stars

22.03.2017 | Physics and Astronomy

New gel-like coating beefs up the performance of lithium-sulfur batteries

22.03.2017 | Materials Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>