Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Femto Photonic Production: New techniques using ultrafast lasers for the manufacturing of tomorrow

15.04.2015

Laser technology plays an outstanding role in the German economy: some 40 percent of beam sources sold worldwide and 20 percent of laser systems for material processing come from Germany. And when it comes to laser use in manufacturing, German companies are at the forefront. To preserve and build on these strengths, the German Federal Ministry of Education and Research (BMBF) has founded the Digital Photonic Production (DPP) research campus, which will be funded by 2 million euros annually for up to 15 years.

In a collaboration that brings together RWTH Aachen University, the Fraunhofer Institute for Laser Technology ILT and industrial partners, the Femto Photonic Production joint research project intends to lay the foundations for the use of ultrafast lasers in industrial manufacturing processes.


Cutting thin glass using an ultrafast laser.

Picture source: Fraunhofer ILT, Aachen, Germany / Volker Lannert.


Filigree quartz glass component (diameter approx. 2 cm) with subtractive 3D print manufactured by project partner LightFab.

Picture Source: Fraunhofer ILT, Aachen, Germany.

Research campus – A sustainable culture of innovation fostered through physical proximity

The DPP research campus is one of nine research campuses set up around Germany. It was officially opened in January 2015 by Thomas Rachel, Parliamentary State Secretary to the German Federal Ministry of Education and Research, establishing a new form of long-term and systematic cooperation between the university, the Fraunhofer-Gesellschaft and currently 28 partners from industry all under one roof.

The goal of this collaboration is the complementary pooling of different resources with a new focus on joint application-oriented basic research. As regards content, the DPP research campus concentrates on researching new methods and fundamental physical effects for the use of lasers as a manufacturing tool, particularly for the major topics of the future, such as energy, health, mobility, security, and information and communications technology.

Three projects by researchers at RWTH Aachen University in cooperation with Fraunhofer ILT and various industrial partners have already been approved within the Aachen research campus: Nano Photonic Production for researching novel VCSEL beam sources; Direct Photonic Production for further developing additive manufacturing methods; and Femto Photonic Production with a main focus on further developing ultrafast laser manufacturing methods.

Femto Photonic Production – Laser processing for modern high-tech materials

Launched in October 2014, the Femto Photonic Production project is scheduled to run for five years. Led by RWTH Aachen University, it is designed to yield a better understanding of the fundamentals involved in the processing of modern materials. The research activities focus particularly on materials with large electronic band gaps – in other words, with high transparencies – such as glass, sapphire and diamond.

Ultrafast lasers (also known as ultrashort pulse, or USP, lasers) represent a class of optical processing systems capable of generating new functionalities on materials and components. However, the fundamental processes at work in the interaction between ultrashort laser pulses and the absorption effects in transparent materials are still not sufficiently understood today.

Many of the materials being researched in the project – and which will be relevant for future applications – are transparent, which means that they can only be processed using very complex laser processes. The core of the joint project is the fundamental analysis, simulation and description of the interaction of laser radiation with transparent materials.

Based on these fundamental results, the optimum performance parameters for the various laser classes along with the adjusted optics and system solutions will be determined for all relevant material classes and subsequently evaluated in experimental studies together with the project’s industrial partners.

One of the goals of these research activities is to make the laser processing of electronic components a viable option for the manufacturing of displays, modern LEDs and power transistors.

Through the close cooperation of experts from RWTH Aachen University and Fraunhofer ILT with the beam source manufacturers TRUMPF, EdgeWave and Amphos, and the system providers 4Jet, LightFab and Pulsar Photonics, project work can draw on a machine and system pool unparalleled anywhere in the world.

This allows scientists and engineers from research and industry to work together productively on topics and interests that are common to them, which is very much in the spirit of cooperation behind the Digital Photonic Production research campus.

Overview of project partners

• Chair for Laser Technology LLT, RWTH Aachen University
• Chair of Optical Systems Technologies TOS, RWTH Aachen University
• Nonlinear Dynamics of Laser Manufacturing Processes Instruction and Research Department NLD, RWTH Aachen University
• 4Jet GmbH
• Amphos GmbH
• EdgeWave GmbH
• Fraunhofer Institute for Laser Technology ILT
• LightFab UG
• Pulsar Photonics GmbH
• TRUMPF Laser- und Systemtechnik GmbH

Contact

Dipl.-Ing. Claudia Hartmann
Micro and Nano Structuring Group
Telephone +49 241 8906-207
claudia.hartmann@ilt

Dr. Arnold Gillner
Head of the competence area Ablation and Joining
Telephone +49 241 8906-148
arnold.gillner@ilt.fraunhofer.de

Fraunhofer Institute for Laser Technology ILT
St4inbachstraße
52074 Aachen

Weitere Informationen:

http://www.ilt.fraunhofer.de
http://www.rwth-aachen.de/cms/root/Wirtschaft/Campusprojekt/Forschungsschwerpunk...

Petra Nolis | Fraunhofer-Institut für Lasertechnik ILT

More articles from Physics and Astronomy:

nachricht A better way to weigh millions of solitary stars
15.12.2017 | Vanderbilt University

nachricht A chip for environmental and health monitoring
15.12.2017 | Friedrich-Alexander-Universität Erlangen-Nürnberg

All articles from Physics and Astronomy >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: First-of-its-kind chemical oscillator offers new level of molecular control

DNA molecules that follow specific instructions could offer more precise molecular control of synthetic chemical systems, a discovery that opens the door for engineers to create molecular machines with new and complex behaviors.

Researchers have created chemical amplifiers and a chemical oscillator using a systematic method that has the potential to embed sophisticated circuit...

Im Focus: Long-lived storage of a photonic qubit for worldwide teleportation

MPQ scientists achieve long storage times for photonic quantum bits which break the lower bound for direct teleportation in a global quantum network.

Concerning the development of quantum memories for the realization of global quantum networks, scientists of the Quantum Dynamics Division led by Professor...

Im Focus: Electromagnetic water cloak eliminates drag and wake

Detailed calculations show water cloaks are feasible with today's technology

Researchers have developed a water cloaking concept based on electromagnetic forces that could eliminate an object's wake, greatly reducing its drag while...

Im Focus: Scientists channel graphene to understand filtration and ion transport into cells

Tiny pores at a cell's entryway act as miniature bouncers, letting in some electrically charged atoms--ions--but blocking others. Operating as exquisitely sensitive filters, these "ion channels" play a critical role in biological functions such as muscle contraction and the firing of brain cells.

To rapidly transport the right ions through the cell membrane, the tiny channels rely on a complex interplay between the ions and surrounding molecules,...

Im Focus: Towards data storage at the single molecule level

The miniaturization of the current technology of storage media is hindered by fundamental limits of quantum mechanics. A new approach consists in using so-called spin-crossover molecules as the smallest possible storage unit. Similar to normal hard drives, these special molecules can save information via their magnetic state. A research team from Kiel University has now managed to successfully place a new class of spin-crossover molecules onto a surface and to improve the molecule’s storage capacity. The storage density of conventional hard drives could therefore theoretically be increased by more than one hundred fold. The study has been published in the scientific journal Nano Letters.

Over the past few years, the building blocks of storage media have gotten ever smaller. But further miniaturization of the current technology is hindered by...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

See, understand and experience the work of the future

11.12.2017 | Event News

Innovative strategies to tackle parasitic worms

08.12.2017 | Event News

AKL’18: The opportunities and challenges of digitalization in the laser industry

07.12.2017 | Event News

 
Latest News

Engineers program tiny robots to move, think like insects

15.12.2017 | Power and Electrical Engineering

One in 5 materials chemistry papers may be wrong, study suggests

15.12.2017 | Materials Sciences

New antbird species discovered in Peru by LSU ornithologists

15.12.2017 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>