Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

The feeding habits of teenage galaxies

14.03.2012
Astronomers have known for some time that the earliest galaxies were much smaller than the impressive spiral and elliptical galaxies that now fill the Universe.

Over the lifetime of the cosmos galaxies have put on a great deal of weight but their food, and eating habits, are still mysterious. A new survey of carefully selected galaxies has focussed on their teenage years — roughly the period from about 3 to 5 billion years after the Big Bang.


This deep view of a tiny patch of sky in the constellation of Cetus (the Sea Monster) shows a selection of galaxies, marked with red crosses, that were used in a new survey of the feeding habits of young galaxies as they grew through cosmic time. Each of the tiny blobs, galaxies seen as they were between three and five billion years after the Big Bang, has been studied in detail using ESO's VLT and the SINFONI instrument.
Credit: ESO/CFHT

By employing the state-of-the-art instruments on ESO's Very Large Telescope an international team is unravelling what really happened. In more than one hundred hours of observations the team has collected the biggest ever set of detailed observations of gas-rich galaxies at this early stage of their development [1].

"Two different ways of growing galaxies are competing: violent merging events when larger galaxies eat smaller ones, or a smoother and continuous flow of gas onto galaxies. Both can lead to lots of new stars being created," explains Thierry Contini (IRAP, Toulouse, France), who leads the work.

The new results point toward a big change in the cosmic evolution of galaxies, when the Universe was between 3 and 5 billion years old. Smooth gas flow (eso1040) seems to have been a big factor in the building of galaxies in the very young Universe, whereas mergers became more important later.

"To understand how galaxies grew and evolved we need to look at them in the greatest possible detail. The SINFONI instrument on ESO's VLT is one of the most powerful tools in the world to dissect young and distant galaxies. It plays the same role that a microscope does for a biologist," adds Thierry Contini.

Distant galaxies like the ones in the survey are just tiny faint blobs in the sky, but the high image quality from the VLT used with the SINFONI instrument [2] means that the astronomers can make maps of how different parts of the galaxies are moving and what they are made of. There were some surprises.

"For me, the biggest surprise was the discovery of many galaxies with no rotation of their gas. Such galaxies are not observed in the nearby Universe. None of the current theories predict these objects," says Benoit Epinat, another member of the team.

"We also didn't expect that so many of the young galaxies in the survey would have heavier elements concentrated in their outer parts — this is the exact opposite of what we see in galaxies today," adds Thierry Contini.

The team are only just starting to explore their rich set of observations. They plan to also observe the galaxies with future instruments on the VLT as well as using ALMA to study the cold gas in these galaxies. Looking further into the future the European Extremely Large Telescope will be ideally equipped to extend this type of study deeper into the early Universe.

Notes

[1] The name of the survey is MASSIV: Mass Assembly Survey with SINFONI in VVDS. The VVDS is the VIMOS-VLT Deep Survey. VIMOS is the VIsible imaging Multi-Object Spectrograph, a powerful camera and spectrograph on the VLT that was used to find the galaxies used in the MASSIV work, and measure their distances and other properties.

[2] SINFONI is the Spectrograph for INtegral Field Observations in the Near Infrared. It is the instrument on the VLT that was used for the MASSIV survey. SINFONI is a near-infrared (1.1-2.45 µm) integral field spectrograph using adaptive optics to improve the image quality.

More information

This research was presented in four papers describing the MASSIV survey that will appear in the journal Astronomy & Astrophysics.

The team is composed of T. Contini (Institut de Recherche en Astrophysique et Planetologie [IRAP], CNRS & Universite de Toulouse, France), B. Epinat (Laboratoire d'Astrophysique de Marseille, CNRS & Universite d'Aix-Marseille, France [LAM]), D. Vergani (Istituto di Astrofisica Spaziale e Fisica Cosmica-INAF, Bologna, Italy [IASF BO-INAF]), J. Queyrel (IRAP), L. Tasca (LAM), B. Garilli (Istituto di Astrofisica Spaziale e Fisica Cosmica-INAF, Milan, Italy [IASF MI-INAF]), O. Le Fevre (LAM), M. Kissler-Patig (ESO), P. Amram (LAM), J. Moultaka (IRAP), L. Paioro (IASF MI-INAF), L. Tresse (LAM), C. Lopez-Sanjuan (LAM), E. Perez-Montero (Instituto de Astrofisica de Andalucia, Granada, Spain), C. Divoy (IRAP) and V. Perret (LAM).

The year 2012 marks the 50th anniversary of the founding of the European Southern Observatory (ESO). ESO is the foremost intergovernmental astronomy organisation in Europe and the world's most productive astronomical observatory. It is supported by 15 countries: Austria, Belgium, Brazil, the Czech Republic, Denmark, France, Finland, Germany, Italy, the Netherlands, Portugal, Spain, Sweden, Switzerland and the United Kingdom. ESO carries out an ambitious programme focused on the design, construction and operation of powerful ground-based observing facilities enabling astronomers to make important scientific discoveries. ESO also plays a leading role in promoting and organising cooperation in astronomical research. ESO operates three unique world-class observing sites in Chile: La Silla, Paranal and Chajnantor. At Paranal, ESO operates the Very Large Telescope, the world's most advanced visible-light astronomical observatory and two survey telescopes. VISTA works in the infrared and is the world's largest survey telescope and the VLT Survey Telescope is the largest telescope designed to exclusively survey the skies in visible light. ESO is the European partner of a revolutionary astronomical telescope ALMA, the largest astronomical project in existence. ESO is currently planning a 40-metre-class European Extremely Large optical/near-infrared Telescope, the E-ELT, which will become "the world's biggest eye on the sky".

Links

- Research papers in A&A: Paper I, Paper II, Paper III, Paper IV

- MASSIV website: http://www.eso.org/ http://www.ast.obs-mip.fr/users/contini/MASSIV/

- Photos of the VLT: http://www.eso.org/public/images/archive/category/paranal/

- Article about MASSIV in ESO Messenger: http://www.eso.org/public/archives/releases/sciencepapers/eso1212/eso1212e.pdf

Contacts

Thierry Contini
Institut de Recherche en Astrophysique et Planétologie, CNRS & Université de Toulouse
Toulouse, France
Tel: +33 561 332 814
Cell: +33 662 641 268
Email: Thierry.Contini@irap.omp.eu
Richard Hook
ESO, La Silla, Paranal, E-ELT and Survey Telescopes Public Information Officer
Garching bei München, Germany
Tel: +49 89 3200 6655
Cell: +49 151 1537 3591
Email: rhook@eso.org

Richard Hook | EurekAlert!
Further information:
http://www.eso.org

More articles from Physics and Astronomy:

nachricht Measured for the first time: Direction of light waves changed by quantum effect
24.05.2017 | Vienna University of Technology

nachricht Physicists discover mechanism behind granular capillary effect
24.05.2017 | University of Cologne

All articles from Physics and Astronomy >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: A quantum walk of photons

Physicists from the University of Würzburg are capable of generating identical looking single light particles at the push of a button. Two new studies now demonstrate the potential this method holds.

The quantum computer has fuelled the imagination of scientists for decades: It is based on fundamentally different phenomena than a conventional computer....

Im Focus: Turmoil in sluggish electrons’ existence

An international team of physicists has monitored the scattering behaviour of electrons in a non-conducting material in real-time. Their insights could be beneficial for radiotherapy.

We can refer to electrons in non-conducting materials as ‘sluggish’. Typically, they remain fixed in a location, deep inside an atomic composite. It is hence...

Im Focus: Wafer-thin Magnetic Materials Developed for Future Quantum Technologies

Two-dimensional magnetic structures are regarded as a promising material for new types of data storage, since the magnetic properties of individual molecular building blocks can be investigated and modified. For the first time, researchers have now produced a wafer-thin ferrimagnet, in which molecules with different magnetic centers arrange themselves on a gold surface to form a checkerboard pattern. Scientists at the Swiss Nanoscience Institute at the University of Basel and the Paul Scherrer Institute published their findings in the journal Nature Communications.

Ferrimagnets are composed of two centers which are magnetized at different strengths and point in opposing directions. Two-dimensional, quasi-flat ferrimagnets...

Im Focus: World's thinnest hologram paves path to new 3-D world

Nano-hologram paves way for integration of 3-D holography into everyday electronics

An Australian-Chinese research team has created the world's thinnest hologram, paving the way towards the integration of 3D holography into everyday...

Im Focus: Using graphene to create quantum bits

In the race to produce a quantum computer, a number of projects are seeking a way to create quantum bits -- or qubits -- that are stable, meaning they are not much affected by changes in their environment. This normally needs highly nonlinear non-dissipative elements capable of functioning at very low temperatures.

In pursuit of this goal, researchers at EPFL's Laboratory of Photonics and Quantum Measurements LPQM (STI/SB), have investigated a nonlinear graphene-based...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Marine Conservation: IASS Contributes to UN Ocean Conference in New York on 5-9 June

24.05.2017 | Event News

AWK Aachen Machine Tool Colloquium 2017: Internet of Production for Agile Enterprises

23.05.2017 | Event News

Dortmund MST Conference presents Individualized Healthcare Solutions with micro and nanotechnology

22.05.2017 | Event News

 
Latest News

Physicists discover mechanism behind granular capillary effect

24.05.2017 | Physics and Astronomy

Measured for the first time: Direction of light waves changed by quantum effect

24.05.2017 | Physics and Astronomy

Marine Conservation: IASS Contributes to UN Ocean Conference in New York on 5-9 June

24.05.2017 | Event News

VideoLinks
B2B-VideoLinks
More VideoLinks >>>