Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

The feeding habits of teenage galaxies

14.03.2012
Astronomers have known for some time that the earliest galaxies were much smaller than the impressive spiral and elliptical galaxies that now fill the Universe.

Over the lifetime of the cosmos galaxies have put on a great deal of weight but their food, and eating habits, are still mysterious. A new survey of carefully selected galaxies has focussed on their teenage years — roughly the period from about 3 to 5 billion years after the Big Bang.


This deep view of a tiny patch of sky in the constellation of Cetus (the Sea Monster) shows a selection of galaxies, marked with red crosses, that were used in a new survey of the feeding habits of young galaxies as they grew through cosmic time. Each of the tiny blobs, galaxies seen as they were between three and five billion years after the Big Bang, has been studied in detail using ESO's VLT and the SINFONI instrument.
Credit: ESO/CFHT

By employing the state-of-the-art instruments on ESO's Very Large Telescope an international team is unravelling what really happened. In more than one hundred hours of observations the team has collected the biggest ever set of detailed observations of gas-rich galaxies at this early stage of their development [1].

"Two different ways of growing galaxies are competing: violent merging events when larger galaxies eat smaller ones, or a smoother and continuous flow of gas onto galaxies. Both can lead to lots of new stars being created," explains Thierry Contini (IRAP, Toulouse, France), who leads the work.

The new results point toward a big change in the cosmic evolution of galaxies, when the Universe was between 3 and 5 billion years old. Smooth gas flow (eso1040) seems to have been a big factor in the building of galaxies in the very young Universe, whereas mergers became more important later.

"To understand how galaxies grew and evolved we need to look at them in the greatest possible detail. The SINFONI instrument on ESO's VLT is one of the most powerful tools in the world to dissect young and distant galaxies. It plays the same role that a microscope does for a biologist," adds Thierry Contini.

Distant galaxies like the ones in the survey are just tiny faint blobs in the sky, but the high image quality from the VLT used with the SINFONI instrument [2] means that the astronomers can make maps of how different parts of the galaxies are moving and what they are made of. There were some surprises.

"For me, the biggest surprise was the discovery of many galaxies with no rotation of their gas. Such galaxies are not observed in the nearby Universe. None of the current theories predict these objects," says Benoit Epinat, another member of the team.

"We also didn't expect that so many of the young galaxies in the survey would have heavier elements concentrated in their outer parts — this is the exact opposite of what we see in galaxies today," adds Thierry Contini.

The team are only just starting to explore their rich set of observations. They plan to also observe the galaxies with future instruments on the VLT as well as using ALMA to study the cold gas in these galaxies. Looking further into the future the European Extremely Large Telescope will be ideally equipped to extend this type of study deeper into the early Universe.

Notes

[1] The name of the survey is MASSIV: Mass Assembly Survey with SINFONI in VVDS. The VVDS is the VIMOS-VLT Deep Survey. VIMOS is the VIsible imaging Multi-Object Spectrograph, a powerful camera and spectrograph on the VLT that was used to find the galaxies used in the MASSIV work, and measure their distances and other properties.

[2] SINFONI is the Spectrograph for INtegral Field Observations in the Near Infrared. It is the instrument on the VLT that was used for the MASSIV survey. SINFONI is a near-infrared (1.1-2.45 µm) integral field spectrograph using adaptive optics to improve the image quality.

More information

This research was presented in four papers describing the MASSIV survey that will appear in the journal Astronomy & Astrophysics.

The team is composed of T. Contini (Institut de Recherche en Astrophysique et Planetologie [IRAP], CNRS & Universite de Toulouse, France), B. Epinat (Laboratoire d'Astrophysique de Marseille, CNRS & Universite d'Aix-Marseille, France [LAM]), D. Vergani (Istituto di Astrofisica Spaziale e Fisica Cosmica-INAF, Bologna, Italy [IASF BO-INAF]), J. Queyrel (IRAP), L. Tasca (LAM), B. Garilli (Istituto di Astrofisica Spaziale e Fisica Cosmica-INAF, Milan, Italy [IASF MI-INAF]), O. Le Fevre (LAM), M. Kissler-Patig (ESO), P. Amram (LAM), J. Moultaka (IRAP), L. Paioro (IASF MI-INAF), L. Tresse (LAM), C. Lopez-Sanjuan (LAM), E. Perez-Montero (Instituto de Astrofisica de Andalucia, Granada, Spain), C. Divoy (IRAP) and V. Perret (LAM).

The year 2012 marks the 50th anniversary of the founding of the European Southern Observatory (ESO). ESO is the foremost intergovernmental astronomy organisation in Europe and the world's most productive astronomical observatory. It is supported by 15 countries: Austria, Belgium, Brazil, the Czech Republic, Denmark, France, Finland, Germany, Italy, the Netherlands, Portugal, Spain, Sweden, Switzerland and the United Kingdom. ESO carries out an ambitious programme focused on the design, construction and operation of powerful ground-based observing facilities enabling astronomers to make important scientific discoveries. ESO also plays a leading role in promoting and organising cooperation in astronomical research. ESO operates three unique world-class observing sites in Chile: La Silla, Paranal and Chajnantor. At Paranal, ESO operates the Very Large Telescope, the world's most advanced visible-light astronomical observatory and two survey telescopes. VISTA works in the infrared and is the world's largest survey telescope and the VLT Survey Telescope is the largest telescope designed to exclusively survey the skies in visible light. ESO is the European partner of a revolutionary astronomical telescope ALMA, the largest astronomical project in existence. ESO is currently planning a 40-metre-class European Extremely Large optical/near-infrared Telescope, the E-ELT, which will become "the world's biggest eye on the sky".

Links

- Research papers in A&A: Paper I, Paper II, Paper III, Paper IV

- MASSIV website: http://www.eso.org/ http://www.ast.obs-mip.fr/users/contini/MASSIV/

- Photos of the VLT: http://www.eso.org/public/images/archive/category/paranal/

- Article about MASSIV in ESO Messenger: http://www.eso.org/public/archives/releases/sciencepapers/eso1212/eso1212e.pdf

Contacts

Thierry Contini
Institut de Recherche en Astrophysique et Planétologie, CNRS & Université de Toulouse
Toulouse, France
Tel: +33 561 332 814
Cell: +33 662 641 268
Email: Thierry.Contini@irap.omp.eu
Richard Hook
ESO, La Silla, Paranal, E-ELT and Survey Telescopes Public Information Officer
Garching bei München, Germany
Tel: +49 89 3200 6655
Cell: +49 151 1537 3591
Email: rhook@eso.org

Richard Hook | EurekAlert!
Further information:
http://www.eso.org

More articles from Physics and Astronomy:

nachricht Interstellar seeds could create oases of life
28.08.2015 | Harvard-Smithsonian Center for Astrophysics

nachricht Draw out of the predicted interatomic force
28.08.2015 | Hiroshima University

All articles from Physics and Astronomy >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Increasingly severe disturbances weaken world's temperate forests

Longer, more severe, and hotter droughts and a myriad of other threats, including diseases and more extensive and severe wildfires, are threatening to transform some of the world's temperate forests, a new study published in Science has found. Without informed management, some forests could convert to shrublands or grasslands within the coming decades.

"While we have been trying to manage for resilience of 20th century conditions, we realize now that we must prepare for transformations and attempt to ease...

Im Focus: OU astrophysicist and collaborators find supermassive black holes in quasar nearest Earth

A University of Oklahoma astrophysicist and his Chinese collaborator have found two supermassive black holes in Markarian 231, the nearest quasar to Earth, using observations from NASA's Hubble Space Telescope.

The discovery of two supermassive black holes--one larger one and a second, smaller one--are evidence of a binary black hole and suggests that supermassive...

Im Focus: What would a tsunami in the Mediterranean look like?

A team of European researchers have developed a model to simulate the impact of tsunamis generated by earthquakes and applied it to the Eastern Mediterranean. The results show how tsunami waves could hit and inundate coastal areas in southern Italy and Greece. The study is published today (27 August) in Ocean Science, an open access journal of the European Geosciences Union (EGU).

Though not as frequent as in the Pacific and Indian oceans, tsunamis also occur in the Mediterranean, mainly due to earthquakes generated when the African...

Im Focus: Self-healing landscape: landslides after earthquake

In mountainous regions earthquakes often cause strong landslides, which can be exacerbated by heavy rain. However, after an initial increase, the frequency of these mass wasting events, often enormous and dangerous, declines, in fact independently of meteorological events and aftershocks.

These new findings are presented by a German-Franco-Japanese team of geoscientists in the current issue of the journal Geology, under the lead of the GFZ...

Im Focus: FIC Proteins Send Bacteria Into Hibernation

Bacteria do not cease to amaze us with their survival strategies. A research team from the University of Basel's Biozentrum has now discovered how bacteria enter a sleep mode using a so-called FIC toxin. In the current issue of “Cell Reports”, the scientists describe the mechanism of action and also explain why their discovery provides new insights into the evolution of pathogens.

For many poisons there are antidotes which neutralize their toxic effect. Toxin-antitoxin systems in bacteria work in a similar manner: As long as a cell...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Networking conference in Heidelberg for outstanding mathematicians and computer scientists

20.08.2015 | Event News

Scientists meet in Münster for the world’s largest Chitin und Chitosan Conference

20.08.2015 | Event News

Large agribusiness management strategies

19.08.2015 | Event News

 
Latest News

Production research by Fraunhofer IAO honored with three awards at the ICPR 2015

31.08.2015 | Awards Funding

Single-Crystal Phosphors Suitable for Ultra-Bright, High-Power White Light Sources

31.08.2015 | Materials Sciences

Manchester Team Reveal New, Stable 2D Materials

31.08.2015 | Materials Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>