Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:


The feeding habits of teenage galaxies

Astronomers have known for some time that the earliest galaxies were much smaller than the impressive spiral and elliptical galaxies that now fill the Universe.

Over the lifetime of the cosmos galaxies have put on a great deal of weight but their food, and eating habits, are still mysterious. A new survey of carefully selected galaxies has focussed on their teenage years — roughly the period from about 3 to 5 billion years after the Big Bang.

This deep view of a tiny patch of sky in the constellation of Cetus (the Sea Monster) shows a selection of galaxies, marked with red crosses, that were used in a new survey of the feeding habits of young galaxies as they grew through cosmic time. Each of the tiny blobs, galaxies seen as they were between three and five billion years after the Big Bang, has been studied in detail using ESO's VLT and the SINFONI instrument.
Credit: ESO/CFHT

By employing the state-of-the-art instruments on ESO's Very Large Telescope an international team is unravelling what really happened. In more than one hundred hours of observations the team has collected the biggest ever set of detailed observations of gas-rich galaxies at this early stage of their development [1].

"Two different ways of growing galaxies are competing: violent merging events when larger galaxies eat smaller ones, or a smoother and continuous flow of gas onto galaxies. Both can lead to lots of new stars being created," explains Thierry Contini (IRAP, Toulouse, France), who leads the work.

The new results point toward a big change in the cosmic evolution of galaxies, when the Universe was between 3 and 5 billion years old. Smooth gas flow (eso1040) seems to have been a big factor in the building of galaxies in the very young Universe, whereas mergers became more important later.

"To understand how galaxies grew and evolved we need to look at them in the greatest possible detail. The SINFONI instrument on ESO's VLT is one of the most powerful tools in the world to dissect young and distant galaxies. It plays the same role that a microscope does for a biologist," adds Thierry Contini.

Distant galaxies like the ones in the survey are just tiny faint blobs in the sky, but the high image quality from the VLT used with the SINFONI instrument [2] means that the astronomers can make maps of how different parts of the galaxies are moving and what they are made of. There were some surprises.

"For me, the biggest surprise was the discovery of many galaxies with no rotation of their gas. Such galaxies are not observed in the nearby Universe. None of the current theories predict these objects," says Benoit Epinat, another member of the team.

"We also didn't expect that so many of the young galaxies in the survey would have heavier elements concentrated in their outer parts — this is the exact opposite of what we see in galaxies today," adds Thierry Contini.

The team are only just starting to explore their rich set of observations. They plan to also observe the galaxies with future instruments on the VLT as well as using ALMA to study the cold gas in these galaxies. Looking further into the future the European Extremely Large Telescope will be ideally equipped to extend this type of study deeper into the early Universe.


[1] The name of the survey is MASSIV: Mass Assembly Survey with SINFONI in VVDS. The VVDS is the VIMOS-VLT Deep Survey. VIMOS is the VIsible imaging Multi-Object Spectrograph, a powerful camera and spectrograph on the VLT that was used to find the galaxies used in the MASSIV work, and measure their distances and other properties.

[2] SINFONI is the Spectrograph for INtegral Field Observations in the Near Infrared. It is the instrument on the VLT that was used for the MASSIV survey. SINFONI is a near-infrared (1.1-2.45 µm) integral field spectrograph using adaptive optics to improve the image quality.

More information

This research was presented in four papers describing the MASSIV survey that will appear in the journal Astronomy & Astrophysics.

The team is composed of T. Contini (Institut de Recherche en Astrophysique et Planetologie [IRAP], CNRS & Universite de Toulouse, France), B. Epinat (Laboratoire d'Astrophysique de Marseille, CNRS & Universite d'Aix-Marseille, France [LAM]), D. Vergani (Istituto di Astrofisica Spaziale e Fisica Cosmica-INAF, Bologna, Italy [IASF BO-INAF]), J. Queyrel (IRAP), L. Tasca (LAM), B. Garilli (Istituto di Astrofisica Spaziale e Fisica Cosmica-INAF, Milan, Italy [IASF MI-INAF]), O. Le Fevre (LAM), M. Kissler-Patig (ESO), P. Amram (LAM), J. Moultaka (IRAP), L. Paioro (IASF MI-INAF), L. Tresse (LAM), C. Lopez-Sanjuan (LAM), E. Perez-Montero (Instituto de Astrofisica de Andalucia, Granada, Spain), C. Divoy (IRAP) and V. Perret (LAM).

The year 2012 marks the 50th anniversary of the founding of the European Southern Observatory (ESO). ESO is the foremost intergovernmental astronomy organisation in Europe and the world's most productive astronomical observatory. It is supported by 15 countries: Austria, Belgium, Brazil, the Czech Republic, Denmark, France, Finland, Germany, Italy, the Netherlands, Portugal, Spain, Sweden, Switzerland and the United Kingdom. ESO carries out an ambitious programme focused on the design, construction and operation of powerful ground-based observing facilities enabling astronomers to make important scientific discoveries. ESO also plays a leading role in promoting and organising cooperation in astronomical research. ESO operates three unique world-class observing sites in Chile: La Silla, Paranal and Chajnantor. At Paranal, ESO operates the Very Large Telescope, the world's most advanced visible-light astronomical observatory and two survey telescopes. VISTA works in the infrared and is the world's largest survey telescope and the VLT Survey Telescope is the largest telescope designed to exclusively survey the skies in visible light. ESO is the European partner of a revolutionary astronomical telescope ALMA, the largest astronomical project in existence. ESO is currently planning a 40-metre-class European Extremely Large optical/near-infrared Telescope, the E-ELT, which will become "the world's biggest eye on the sky".


- Research papers in A&A: Paper I, Paper II, Paper III, Paper IV

- MASSIV website:

- Photos of the VLT:

- Article about MASSIV in ESO Messenger:


Thierry Contini
Institut de Recherche en Astrophysique et Planétologie, CNRS & Université de Toulouse
Toulouse, France
Tel: +33 561 332 814
Cell: +33 662 641 268
Richard Hook
ESO, La Silla, Paranal, E-ELT and Survey Telescopes Public Information Officer
Garching bei München, Germany
Tel: +49 89 3200 6655
Cell: +49 151 1537 3591

Richard Hook | EurekAlert!
Further information:

More articles from Physics and Astronomy:

nachricht Physicists made crystal lattice from polaritons
20.03.2018 | ITMO University

nachricht Mars' oceans formed early, possibly aided by massive volcanic eruptions
20.03.2018 | University of California - Berkeley

All articles from Physics and Astronomy >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Mars' oceans formed early, possibly aided by massive volcanic eruptions

Oceans formed before Tharsis and evolved together, shaping climate history of Mars

A new scenario seeking to explain how Mars' putative oceans came and went over the last 4 billion years implies that the oceans formed several hundred million...

Im Focus: Tiny implants for cells are functional in vivo

For the first time, an interdisciplinary team from the University of Basel has succeeded in integrating artificial organelles into the cells of live zebrafish embryos. This innovative approach using artificial organelles as cellular implants offers new potential in treating a range of diseases, as the authors report in an article published in Nature Communications.

In the cells of higher organisms, organelles such as the nucleus or mitochondria perform a range of complex functions necessary for life. In the networks of...

Im Focus: Locomotion control with photopigments

Researchers from Göttingen University discover additional function of opsins

Animal photoreceptors capture light with photopigments. Researchers from the University of Göttingen have now discovered that these photopigments fulfill an...

Im Focus: Surveying the Arctic: Tracking down carbon particles

Researchers embark on aerial campaign over Northeast Greenland

On 15 March, the AWI research aeroplane Polar 5 will depart for Greenland. Concentrating on the furthest northeast region of the island, an international team...

Im Focus: Unique Insights into the Antarctic Ice Shelf System

Data collected on ocean-ice interactions in the little-researched regions of the far south

The world’s second-largest ice shelf was the destination for a Polarstern expedition that ended in Punta Arenas, Chile on 14th March 2018. Oceanographers from...

All Focus news of the innovation-report >>>



Industry & Economy
Event News

Virtual reality conference comes to Reutlingen

19.03.2018 | Event News

Ultrafast Wireless and Chip Design at the DATE Conference in Dresden

16.03.2018 | Event News

International Tinnitus Conference of the Tinnitus Research Initiative in Regensburg

13.03.2018 | Event News

Latest News

Physicists made crystal lattice from polaritons

20.03.2018 | Physics and Astronomy

Mars' oceans formed early, possibly aided by massive volcanic eruptions

20.03.2018 | Physics and Astronomy

Thawing permafrost produces more methane than expected

20.03.2018 | Earth Sciences

Science & Research
Overview of more VideoLinks >>>