Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:


Features of early Martian environment and presence of water drive search for life forms

Solar energy and winds, collisions with asteroids and comets, and changing magnetic fields have all altered the environment of Mars, a planet that may have been able to support life during its history, as documented in a special collection of papers published in the current issue of Astrobiology, a peer-reviewed journal published by Mary Ann Liebert, Inc. This Special Paper Collection is available free online at

Compiled by Helmut Lammer, PhD, Senior Editor of Astrobiology, from the Austrian Academy of Sciences, this special paper collection features a report by Pham et al. that presents a semi-analytical model to evaluate the influence of impacts on the evolution of the carbon dioxide-based martian atmosphere.

The results of this study indicate that impacts alone cannot satisfactorily explain the loss of significant atmospheric mass since the Late Noachian (~ 3.7 – 4 Ga). In other words, if the martian atmosphere was much denser at about 4 Ga than at present, impact erosion was most likely not responsible for the removal of the atmosphere at that time. Terada et al. present a 3-D model to assess the effects of exposure to solar energy and winds on ion escape on early Mars 4.5 Ga, and to demonstrate how ion erosion could have led to the loss of water that might have been present on Mars.

Two reports, by Horváth et al. and Fendrihan et al., explore the existence and survival of two types of bacteria under martian surface and environmental conditions, and the types of habitats that might have existed to support these life forms.

"The results of Pham et al. and Terada et al. indicate that Mars should have lost its denser initial CO2 atmosphere very early," says Dr. Lammer, PhD, "and may have been cold and dry during most of its history. Leblanc and colleagues propose a new concept in exploratory missions with Mars Environment and Magnetic Orbiter (MEMO), which would gather data to help scientists understand how the martian surface, atmosphere, and magnetic field have evolved, and how those questions raised by Terada et al. and Pham et al. can be investigated."

In honor of the bicentenary of the birth of Charles Darwin in 2009 and the anniversary of the publication of his seminal work, On the Origin of Species, this issue of Astrobiology also includes papers describing the proposed Darwin Mission, which will take measurements on Earth-like planets outside our solar system.

"Though the final configuration of missions to study the spectra of Earth-like planets has not yet been decided," says Charles S. Cockell, PhD, Senior Editor of Astrobiology, and Professor at The Open University, Milton Keynes, UK, "Darwin represents a very important step in a consolidated scientific and technical architecture for such a mission."

Astrobiology is an authoritative peer-reviewed journal published 10 times a year in print and online. The Journal provides a forum for scientists seeking to advance our understanding of life's origins, evolution, distribution, and destiny in the universe. A complete table of contents and a full text for this issue may be viewed online at

Astrobiology is the leading peer-reviewed journal in its field. To promote this developing field, the Journal has teamed up with The Astrobiology Web to highlight one outstanding paper per issue of Astrobiology. This paper is available free online at and to visitors of The Astrobiology Web at

Mary Ann Liebert, Inc. ( is a privately held, fully integrated media company known for establishing authoritative peer-reviewed journals in many promising areas of science and biomedical research. Its biotechnology trade magazine, Genetic Engineering & Biotechnology News (GEN), was the first in its field and is today the industry's most widely read publication worldwide. A complete list of the firm's 60 journals, books, and newsmagazines is available at

Mary Ann Liebert, Inc. 140 Huguenot St., New Rochelle, NY 10801-5215
Phone: (914) 740-2100 (800) M-LIEBERT Fax: (914) 740-2101

Vicki Cohn | EurekAlert!
Further information:

More articles from Physics and Astronomy:

nachricht First results of NSTX-U research operations
26.10.2016 | DOE/Princeton Plasma Physics Laboratory

nachricht Scientists discover particles similar to Majorana fermions
25.10.2016 | Chinese Academy of Sciences Headquarters

All articles from Physics and Astronomy >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Etching Microstructures with Lasers

Ultrafast lasers have introduced new possibilities in engraving ultrafine structures, and scientists are now also investigating how to use them to etch microstructures into thin glass. There are possible applications in analytics (lab on a chip) and especially in electronics and the consumer sector, where great interest has been shown.

This new method was born of a surprising phenomenon: irradiating glass in a particular way with an ultrafast laser has the effect of making the glass up to a...

Im Focus: Light-driven atomic rotations excite magnetic waves

Terahertz excitation of selected crystal vibrations leads to an effective magnetic field that drives coherent spin motion

Controlling functional properties by light is one of the grand goals in modern condensed matter physics and materials science. A new study now demonstrates how...

Im Focus: New 3-D wiring technique brings scalable quantum computers closer to reality

Researchers from the Institute for Quantum Computing (IQC) at the University of Waterloo led the development of a new extensible wiring technique capable of controlling superconducting quantum bits, representing a significant step towards to the realization of a scalable quantum computer.

"The quantum socket is a wiring method that uses three-dimensional wires based on spring-loaded pins to address individual qubits," said Jeremy Béjanin, a PhD...

Im Focus: Scientists develop a semiconductor nanocomposite material that moves in response to light

In a paper in Scientific Reports, a research team at Worcester Polytechnic Institute describes a novel light-activated phenomenon that could become the basis for applications as diverse as microscopic robotic grippers and more efficient solar cells.

A research team at Worcester Polytechnic Institute (WPI) has developed a revolutionary, light-activated semiconductor nanocomposite material that can be used...

Im Focus: Diamonds aren't forever: Sandia, Harvard team create first quantum computer bridge

By forcefully embedding two silicon atoms in a diamond matrix, Sandia researchers have demonstrated for the first time on a single chip all the components needed to create a quantum bridge to link quantum computers together.

"People have already built small quantum computers," says Sandia researcher Ryan Camacho. "Maybe the first useful one won't be a single giant quantum computer...

All Focus news of the innovation-report >>>



Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

Agricultural Trade Developments and Potentials in Central Asia and the South Caucasus

14.10.2016 | Event News

World Health Summit – Day Three: A Call to Action

12.10.2016 | Event News

Latest News

Greater Range and Longer Lifetime

26.10.2016 | Power and Electrical Engineering

VDI presents International Bionic Award of the Schauenburg Foundation

26.10.2016 | Awards Funding

3-D-printed magnets

26.10.2016 | Power and Electrical Engineering

More VideoLinks >>>