Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Fear no supernova

19.12.2011
Given the incredible amounts of energy in a supernova explosion – as much as the sun creates during its entire lifetime – another erroneous doomsday theory is that such an explosion could happen in 2012 and harm life on Earth.

However, given the vastness of space and the long times between supernovae, astronomers can say with certainty that there is no threatening star close enough to hurt Earth.


Supernova 1987A was the closest exploding star seen in modern times. It occurred in the Large Magellanic Cloud, a small galaxy that orbits our own Milky Way. Images taken by NASA's Hubble Space Telescope were combined to make this composite of the blast's expanding debris. Credit: Credit: NASA / ESA / P. Challis and R. Kirshner (Harvard-Smithsonian Center for Astrophysics)

Astronomers estimate that, on average, about one or two supernovae explode each century in our galaxy. But for Earth's ozone layer to experience damage from a supernova, the blast must occur less than 50 light-years away. All of the nearby stars capable of going supernova are much farther than this.

Any planet with life on it near a star that goes supernova would indeed experience problems. X- and gamma-ray radiation from the supernova could damage the ozone layer, which protects us from harmful ultraviolet light in the sun's rays. The less ozone there is, the more UV light reaches the surface. At some wavelengths, just a 10 percent increase in ground-level UV can be lethal to some organisms, including phytoplankton near the ocean surface. Because these organisms form the basis of oxygen production on Earth and the marine food chain, any significant disruption to them could cascade into a planet-wide problem.

Another explosive event, called a gamma-ray burst (GRB), is often associated with supernovae. When a massive star collapses on itself -- or, less frequently, when two compact neutron stars collide -- the result is the birth of a black hole. As matter falls toward a nascent black hole, some of it becomes accelerated into a particle jet so powerful that it can drill its way completely through the star before the star's outermost layers even have begun to collapse. If one of the jets happens to be directed toward Earth, orbiting satellites detect a burst of highly energetic gamma rays somewhere in the sky. These bursts occur almost daily and are so powerful that they can be seen across billions of light-years.

A gamma-ray burst could affect Earth in much the same way as a supernova -- and at much greater distance -- but only if its jet is directly pointed our way. Astronomers estimate that a gamma-ray burst could affect Earth from up to 10,000 light-years away with each separated by about 15 million years, on average. So far, the closest burst on record, known as GRB 031203, was 1.3 billion light-years away.

As with impacts, our planet likely has already experienced such events over its long history, but there's no reason to expect a gamma-ray burst in our galaxy to occur in the near future, much less in December 2012.

Susan Hendrix | EurekAlert!
Further information:
http://www.nasa.gov

More articles from Physics and Astronomy:

nachricht New research identifies how 3-D printed metals can be both strong and ductile
11.12.2017 | University of Birmingham

nachricht Three kinds of information from a single X-ray measurement
11.12.2017 | Friedrich-Schiller-Universität Jena

All articles from Physics and Astronomy >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Scientists channel graphene to understand filtration and ion transport into cells

Tiny pores at a cell's entryway act as miniature bouncers, letting in some electrically charged atoms--ions--but blocking others. Operating as exquisitely sensitive filters, these "ion channels" play a critical role in biological functions such as muscle contraction and the firing of brain cells.

To rapidly transport the right ions through the cell membrane, the tiny channels rely on a complex interplay between the ions and surrounding molecules,...

Im Focus: Towards data storage at the single molecule level

The miniaturization of the current technology of storage media is hindered by fundamental limits of quantum mechanics. A new approach consists in using so-called spin-crossover molecules as the smallest possible storage unit. Similar to normal hard drives, these special molecules can save information via their magnetic state. A research team from Kiel University has now managed to successfully place a new class of spin-crossover molecules onto a surface and to improve the molecule’s storage capacity. The storage density of conventional hard drives could therefore theoretically be increased by more than one hundred fold. The study has been published in the scientific journal Nano Letters.

Over the past few years, the building blocks of storage media have gotten ever smaller. But further miniaturization of the current technology is hindered by...

Im Focus: Successful Mechanical Testing of Nanowires

With innovative experiments, researchers at the Helmholtz-Zentrums Geesthacht and the Technical University Hamburg unravel why tiny metallic structures are extremely strong

Light-weight and simultaneously strong – porous metallic nanomaterials promise interesting applications as, for instance, for future aeroplanes with enhanced...

Im Focus: Virtual Reality for Bacteria

An interdisciplinary group of researchers interfaced individual bacteria with a computer to build a hybrid bio-digital circuit - Study published in Nature Communications

Scientists at the Institute of Science and Technology Austria (IST Austria) have managed to control the behavior of individual bacteria by connecting them to a...

Im Focus: A space-time sensor for light-matter interactions

Physicists in the Laboratory for Attosecond Physics (run jointly by LMU Munich and the Max Planck Institute for Quantum Optics) have developed an attosecond electron microscope that allows them to visualize the dispersion of light in time and space, and observe the motions of electrons in atoms.

The most basic of all physical interactions in nature is that between light and matter. This interaction takes place in attosecond times (i.e. billionths of a...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

See, understand and experience the work of the future

11.12.2017 | Event News

Innovative strategies to tackle parasitic worms

08.12.2017 | Event News

AKL’18: The opportunities and challenges of digitalization in the laser industry

07.12.2017 | Event News

 
Latest News

PhoxTroT: Optical Interconnect Technologies Revolutionized Data Centers and HPC Systems

11.12.2017 | Information Technology

Large-scale battery storage system in field trial

11.12.2017 | Power and Electrical Engineering

See, understand and experience the work of the future

11.12.2017 | Event News

VideoLinks
B2B-VideoLinks
More VideoLinks >>>