Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

New FASTSAT discoveries paint detailed view of region near Earth

15.11.2011
Space around Earth is anything but a barren vacuum. The area seethes with electric and magnetic fields that change constantly.

Charged particles flow through, moving energy around, creating electric currents, and producing the aurora. Many of these particles stream in from the solar wind, starting out 93 million miles away on the surface of the sun. But some areas are dominated by particles of a more local source: Earth's atmosphere.


This artist's concept drawing shows the Fast, Affordable, Science and Technology SATellite (FASTSAT) -- NASA's first microsatellite, which launched on Nov. 19, 2010 and has been collecting data on the dynamic atmosphere surrounding Earth. Credit: NASA

These are the particles being watched by FASTSAT's Miniature Imager for Neutral Ionospheric Atoms and Magnetospheric Electrons (MINI-ME) instrument. For one well-defined event, scientists have compared MINI-ME's observations to those from two other instruments. The event shows a detailed picture of this dynamic region, with a host of interrelated phenomena -- such as electric current and outflowing particles – occurring together.

"We're seeing structures that are fairly consistent throughout a handful of instruments," says Michael Collier at NASA's Goddard Space Flight Center in Greenbelt, Md., who is the principal investigator for MINI-ME. "We put all of these observations together and it tells a story greater than the sum of its parts."

Unlike the hotter hydrogen coming from the sun, Earth's upper atmosphere generally supplies cooler oxygen ions that course outward along Earth's magnetic field lines. This "ion outflow" occurs continuously, but is especially strong during periods when there is more solar activity such as solar flares and coronal mass ejections that burst off the sun and move toward Earth. Such activity drives oxygen ions out of our planet's upper atmosphere, particularly in regions where aurora displays are strong.

"These ion outflow events are important because they help us understand the space weather environment around Earth," says Goddard's Doug Rowland who is the principal investigator for FASTSAT's Plasma Impedance Spectrum Analyzer, or PISA instrument. "The heavy ions flowing away from Earth can act as a brake, or damper, on incoming energy from the solar wind. The flow also indicates ways in which planets can lose their atmospheres – something that happens slowly on Earth, but more quickly on smaller planets with weaker magnetic fields, like Mars."

MINI-ME has been successfully spotting such outflows since the instrument first began to collect data in the winter of 2010. The instrument counts ions as it moves through a part of Earth's atmosphere called the ionosphere. This is the region where the particles gain enough speed and energy to overcome Earth's gravity, so it's an ideal place to study the first step in the outflow process.

Late on March 31, 2011, the FASTSAT spacecraft flew through an ion outflow with well-defined areas of increased fast moving, or "energetic," particles.

Simultaneous observations from PISA, which measures the density of material in the atmosphere, also showed that this was a highly structured auroral zone. In addition, the scientists turned to the National Science Foundation's Active Magnetosphere and Planetary Electrodynamics Response Experiment (AMPERE), a mission managed by the Johns Hopkins Applied Physics Laboratory, which measures current flow and magnetic features through a network of instruments placed on commercial satellites owned by Iridium Communications. AMPERE data showed current structures that were also consistent with what is expected for an auroral zone.

"This is just one event," says Collier. "But it helps confirm the idea that the current and ion-outflows are all connected. As we continue to go through the data, there will be many more events to follow. We'd like to be able to pin down the origin of all these mechanisms in the ionosphere."

Over time, data like this will allow scientists to determine where these ions come from, what drives them, and how their intensity varies with incoming solar activity.

Susan Hendrix | EurekAlert!
Further information:
http://www.nasa.gov

More articles from Physics and Astronomy:

nachricht SwRI-led team discovers lull in Mars' giant impact history
26.04.2017 | Southwest Research Institute

nachricht New survey hints at exotic origin for the Cold Spot
26.04.2017 | Royal Astronomical Society

All articles from Physics and Astronomy >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Making lightweight construction suitable for series production

More and more automobile companies are focusing on body parts made of carbon fiber reinforced plastics (CFRP). However, manufacturing and repair costs must be further reduced in order to make CFRP more economical in use. Together with the Volkswagen AG and five other partners in the project HolQueSt 3D, the Laser Zentrum Hannover e.V. (LZH) has developed laser processes for the automatic trimming, drilling and repair of three-dimensional components.

Automated manufacturing processes are the basis for ultimately establishing the series production of CFRP components. In the project HolQueSt 3D, the LZH has...

Im Focus: Wonder material? Novel nanotube structure strengthens thin films for flexible electronics

Reflecting the structure of composites found in nature and the ancient world, researchers at the University of Illinois at Urbana-Champaign have synthesized thin carbon nanotube (CNT) textiles that exhibit both high electrical conductivity and a level of toughness that is about fifty times higher than copper films, currently used in electronics.

"The structural robustness of thin metal films has significant importance for the reliable operation of smart skin and flexible electronics including...

Im Focus: Deep inside Galaxy M87

The nearby, giant radio galaxy M87 hosts a supermassive black hole (BH) and is well-known for its bright jet dominating the spectrum over ten orders of magnitude in frequency. Due to its proximity, jet prominence, and the large black hole mass, M87 is the best laboratory for investigating the formation, acceleration, and collimation of relativistic jets. A research team led by Silke Britzen from the Max Planck Institute for Radio Astronomy in Bonn, Germany, has found strong indication for turbulent processes connecting the accretion disk and the jet of that galaxy providing insights into the longstanding problem of the origin of astrophysical jets.

Supermassive black holes form some of the most enigmatic phenomena in astrophysics. Their enormous energy output is supposed to be generated by the...

Im Focus: A Quantum Low Pass for Photons

Physicists in Garching observe novel quantum effect that limits the number of emitted photons.

The probability to find a certain number of photons inside a laser pulse usually corresponds to a classical distribution of independent events, the so-called...

Im Focus: Microprocessors based on a layer of just three atoms

Microprocessors based on atomically thin materials hold the promise of the evolution of traditional processors as well as new applications in the field of flexible electronics. Now, a TU Wien research team led by Thomas Müller has made a breakthrough in this field as part of an ongoing research project.

Two-dimensional materials, or 2D materials for short, are extremely versatile, although – or often more precisely because – they are made up of just one or a...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Expert meeting “Health Business Connect” will connect international medical technology companies

20.04.2017 | Event News

Wenn der Computer das Gehirn austrickst

18.04.2017 | Event News

7th International Conference on Crystalline Silicon Photovoltaics in Freiburg on April 3-5, 2017

03.04.2017 | Event News

 
Latest News

Scientist invents way to trigger artificial photosynthesis to clean air

26.04.2017 | Materials Sciences

Ammonium nitrogen input increases the synthesis of anticarcinogenic compounds in broccoli

26.04.2017 | Agricultural and Forestry Science

SwRI-led team discovers lull in Mars' giant impact history

26.04.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>